Suppr超能文献

基于傅里叶的三维平面波成象波束形成法及其在选择性合成的向量流成象中的应用。

Fourier-based beamforming for 3D plane wave imaging and application in vector flow imaging using selective compounding.

机构信息

Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, People's Republic of China.

United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, People's Republic of China.

出版信息

Phys Med Biol. 2024 Sep 10;69(18). doi: 10.1088/1361-6560/ad7224.

Abstract

. Ultrafast ultrasound imaging using planar or diverging waves for transmission is a promising approach for efficient 3D imaging with matrix arrays. This technique has advantages for B-mode imaging and advanced techniques, such as 3D vector flow imaging (VFI). The computation load of the cross-beam technique is associated with the number of transmit anglesand receive angles. The full velocity vector is obtained using the least square fashion. However, the beamforming is repeated × times using a conventional time-domain delay-and-sum (DAS) beamformer. In the 3D case, the collection and processing of data from different beams increase the amount of data that must be processed, requiring more storage capacity and processing power. Furthermore, the large computation complexity of DAS is another major concern. These challenges translate into longer computational times, increased complexity in data processing, and difficulty in real-time applications.. In response to this issue, this study proposes a novel Fourier domain beamformer for 3D plane wave imaging, which significantly increases the computational speed. Additionally, a selective compounding strategy is proposed for VFI, which reduces the beamforming process from × to(whereandrepresent the number of transmission and reception, respectively), effectively shortening the processing time. The underlying principle is to decompose the receive wavefront into a series of plane waves with different slant angles. Each slant angle can produce a sub-volume for coherent or selective compounding. This method does not rely on the assumption that the plane wave is perfect and the results show that our proposed beamformer is better than DAS in terms of resolution and image contrast. In the case of velocity estimation, for the Fourier-based method, only Tx angles are assigned in the beamformer and the selective compounding method produces the final image with a specialized Rx angle.. Simulation studies andexperiments confirm the efficacy of this new method. The proposed beamformer shows improved resolution and contrast performance compared to the DAS beamformer for B-mode imaging, with a suppressed sidelobe level. Furthermore, the proposed technique outperforms the conventional DAS method, as evidenced by lower mean bias and standard deviation in velocity estimation for VFI. Notably, the computation time has been shortened by 40 times, thus promoting the real-time application of this technique. The efficacy of this new method is verified through simulation studies andexperiments and evaluated by mean bias and standard deviation. Theresults reveal a better velocity estimation: the mean bias is 2.3%, 3.4%, and 5.0% for,, and, respectively. The mean standard deviation is 1.8%, 1.7%, and 3.4%. With DAS, the evaluated mean bias is 9.8%, 4.6%, and 6.7% and the measured mean standard deviation is 7.5%, 2.5%, and 3.9%.. In this work, we propose a novel Fourier-based method for both B-mode imaging and functional VFI. The new beamformer is shown to produce better image quality and improved velocity estimation. Moreover, the new VFI computation time is reduced by 40 times compared to conventional methods. This new method may pave a new way for real-time 3D VFI applications.

摘要

. 基于平面波或发散波的超快速超声成像技术是一种利用矩阵阵列实现高效 3D 成像的有前途的方法。该技术在 B 模式成像和高级技术(如 3D 向量流成像(VFI))方面具有优势。交叉波束技术的计算负载与发射角度和接收角度的数量有关。使用最小二乘法获得完整的速度向量。然而,使用传统的时域延迟和求和(DAS)波束形成器重复 × 次进行波束形成。在 3D 情况下,来自不同波束的数据的采集和处理增加了必须处理的数据量,需要更多的存储容量和处理能力。此外,DAS 的大计算复杂度是另一个主要关注点。这些挑战转化为更长的计算时间、数据处理的复杂性增加以及实时应用的困难。. 针对这一问题,本研究提出了一种新颖的用于 3D 平面波成像的傅里叶域波束形成器,可显著提高计算速度。此外,还提出了一种用于 VFI 的选择性复合策略,将波束形成过程从 × 减少到(其中和分别表示发射和接收的数量),有效地缩短了处理时间。其基本原理是将接收波阵面分解为具有不同倾斜角的一系列平面波。每个倾斜角都可以产生一个用于相干或选择性复合的子体积。该方法不依赖于平面波是完美的假设,结果表明,与 DAS 相比,我们提出的波束形成器在分辨率和图像对比度方面表现更好。在速度估计方面,对于基于傅里叶的方法,仅在波束形成器中分配 Tx 角度,并且选择性复合方法使用专门的 Rx 角度生成最终图像。. 仿真研究和实验验证了这种新方法的有效性。与 B 模式成像的 DAS 波束形成器相比,所提出的波束形成器在抑制旁瓣电平方面表现出更好的分辨率和对比度性能。此外,所提出的技术优于传统的 DAS 方法,这表现在 VFI 的速度估计中具有更低的平均偏差和标准偏差。值得注意的是,计算时间缩短了 40 倍,从而促进了该技术的实时应用。通过仿真研究和实验验证了这种新方法的有效性,并通过平均偏差和标准偏差进行了评估。结果显示出更好的速度估计:对于 、和,分别为 2.3%、3.4%和 5.0%。平均标准偏差为 1.8%、1.7%和 3.4%。对于 DAS,评估的平均偏差为 9.8%、4.6%和 6.7%,测量的平均标准偏差为 7.5%、2.5%和 3.9%。. 在这项工作中,我们提出了一种新颖的基于傅里叶的方法,用于 B 模式成像和功能 VFI。结果表明,新的波束形成器可以产生更好的图像质量和改进的速度估计。此外,与传统方法相比,新的 VFI 计算时间减少了 40 倍。这种新方法可能为实时 3D VFI 应用开辟新的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验