Department of Bioscience, School of Natural Sciences, Technical University of Munich, Garching D-85748, Germany.
ACS Synth Biol. 2022 Oct 21;11(10):3273-3284. doi: 10.1021/acssynbio.2c00195. Epub 2022 Sep 12.
Pattern formation processes play a decisive role during embryogenesis and involve the precise spatial and temporal orchestration of intricate gene regulatory processes. Synthetic gene circuits modeled after their biological counterparts can be used to investigate such processes under well-controlled conditions and may, in the future, be utilized for autonomous position determination in synthetic biological materials. Here, we investigated a three-node feed-forward gene regulatory circuit in vitro that generates three distinct fluorescent outputs in response to varying concentrations of a single externally supplied morphogen. The circuit acts as a band detector for the morphogen concentration and, in a spatial context, could serve as a stripe-forming gene circuit. We simulated the behavior of the genetic circuit in the presence of a morphogen gradient using a system of ordinary differential equations and determined optimal parameters for stripe-pattern formation using an evolutionary algorithm. To analyze the subcircuits of the system, we conducted cell-free characterization experiments and finally tested the whole genetic circuit in nanoliter-scale microfluidic flow reactors that provided a continuous supply of cell extract and metabolites and allowed removal of degradation products. To make use of the widely employed promoters P and P in our design, we removed LacI from our bacterial cell extract by genome engineering using a pORTMAGE workflow. Our results show that the band-detector works as designed when operated out of equilibrium within the flow reactors. On the other hand, subcircuits of the system and the whole circuit fail to generate the desired gene expression response when operated in a closed reactor. Our work thus underlines the importance of out-of-equilibrium operation of complex gene circuits, which cannot settle to a steady-state expression pattern within the finite lifetime of a cell-free expression system.
模式形成过程在胚胎发生中起着决定性的作用,涉及复杂基因调控过程的精确时空协调。仿照生物对应物设计的合成基因电路可用于在良好控制的条件下研究这些过程,并且将来可能用于在合成生物材料中进行自主位置确定。在这里,我们在体外研究了一个三节点前馈基因调控电路,该电路可响应单一外部供应形态发生素的变化浓度产生三种不同的荧光输出。该电路充当形态发生素浓度的带检测器,并且在空间背景下,可以用作条纹形成基因电路。我们使用常微分方程系统模拟了存在形态发生素梯度时遗传电路的行为,并使用进化算法确定了条纹图案形成的最佳参数。为了分析系统的子电路,我们进行了无细胞特性化实验,最后在纳升规模的微流控流动反应器中测试了整个遗传电路,该反应器提供了细胞提取物和代谢物的连续供应,并允许去除降解产物。为了在我们的设计中利用广泛使用的启动子 P 和 P,我们使用 pORTMAGE 工作流程通过基因组工程从我们的细菌细胞提取物中去除了 LacI。我们的结果表明,当在流动反应器中处于非平衡状态下运行时,带检测器按设计工作。另一方面,当在封闭的反应器中运行时,系统的子电路和整个电路都无法产生所需的基因表达响应。因此,我们的工作强调了复杂基因电路的非平衡运行的重要性,在无细胞表达系统的有限寿命内,它们无法稳定到稳定的表达模式。