Image Science Institute, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands.
Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands.
Eur J Cancer. 2022 Nov;175:60-76. doi: 10.1016/j.ejca.2022.07.034. Epub 2022 Sep 9.
Checkpoint inhibition has radically improved the perspective for patients with metastatic cancer, but predicting who will not respond with high certainty remains difficult. Imaging-derived biomarkers may be able to provide additional insights into the heterogeneity in tumour response between patients. In this systematic review, we aimed to summarise and qualitatively assess the current evidence on imaging biomarkers that predict response and survival in patients treated with checkpoint inhibitors in all cancer types.
PubMed and Embase were searched from database inception to 29th November 2021. Articles eligible for inclusion described baseline imaging predictive factors, radiomics and/or imaging machine learning models for predicting response and survival in patients with any kind of malignancy treated with checkpoint inhibitors. Risk of bias was assessed using the QUIPS and PROBAST tools and data was extracted.
In total, 119 studies including 15,580 patients were selected. Of these studies, 73 investigated simple imaging factors. 45 studies investigated radiomic features or deep learning models. Predictors of worse survival were (i) higher tumour burden, (ii) presence of liver metastases, (iii) less subcutaneous adipose tissue, (iv) less dense muscle and (v) presence of symptomatic brain metastases. Hazard rate ratios did not exceed 2.00 for any predictor in the larger and higher quality studies. The added value of baseline fluorodeoxyglucose positron emission tomography parameters in predicting response to treatment was limited. Pilot studies of radioactive drug tracer imaging showed promising results. Reports on radiomics were almost unanimously positive, but numerous methodological concerns exist.
There is well-supported evidence for several imaging biomarkers that can be used in clinical decision making. Further research, however, is needed into biomarkers that can more accurately identify which patients who will not benefit from checkpoint inhibition. Radiomics and radioactive drug labelling appear to be promising approaches for this purpose.
检查点抑制剂的出现极大地改善了转移性癌症患者的预后,但仍难以非常确定地预测哪些患者不会产生应答。影像学衍生的生物标志物可能能够为患者间肿瘤应答的异质性提供额外的见解。在本系统评价中,我们旨在总结并定性评估目前所有癌症类型中接受检查点抑制剂治疗的患者中预测应答和生存的影像学生物标志物的证据。
我们从数据库建立到 2021 年 11 月 29 日在 PubMed 和 Embase 上进行了检索。符合纳入标准的文章描述了预测患者任何恶性肿瘤接受检查点抑制剂治疗的应答和生存的基线影像学预测因素、放射组学和/或影像学机器学习模型。使用 QUIPS 和 PROBAST 工具评估偏倚风险并提取数据。
共选择了 119 项研究,包括 15580 名患者。其中 73 项研究调查了简单的影像学因素。45 项研究调查了放射组学特征或深度学习模型。生存较差的预测因素包括(i)肿瘤负担较高,(ii)存在肝转移,(iii)皮下脂肪组织较少,(iv)肌肉密度较低,(v)存在有症状的脑转移。在较大型和高质量的研究中,任何预测因素的危险比均未超过 2.00。基线氟脱氧葡萄糖正电子发射断层扫描参数在预测治疗应答方面的附加价值有限。放射性药物示踪剂成像的初步研究显示出有希望的结果。放射组学的报告几乎一致为阳性,但存在许多方法学问题。
有充分证据支持几种可用于临床决策的影像学生物标志物。然而,需要进一步研究能够更准确识别哪些患者不会从检查点抑制中获益的生物标志物。放射组学和放射性药物标记似乎是达到这一目的的有前途的方法。