Suppr超能文献

利用CT扫描进行深度学习以预测晚期黑色素瘤的检查点抑制剂治疗效果。

Deep learning on CT scans to predict checkpoint inhibitor treatment outcomes in advanced melanoma.

作者信息

Ter Maat Laurens S, De Mooij Rob A J, Van Duin Isabella A J, Verhoeff Joost J C, Elias Sjoerd G, Leiner Tim, van Amsterdam Wouter A C, Troenokarso Max F, Arntz Eran R A N, Van den Berkmortel Franchette W P J, Boers-Sonderen Marye J, Boomsma Martijn F, Van den Eertwegh Fons J M, de Groot Jan Willem, Hospers Geke A P, Piersma Djura, Vreugdenhil Art, Westgeest Hans M, Kapiteijn Ellen, De Wit Ardine A, Blokx Willeke A M, Van Diest Paul J, De Jong Pim A, Pluim Josien P W, Suijkerbuijk Karijn P M, Veta Mitko

机构信息

Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Medical Image Analysis, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.

出版信息

Sci Rep. 2024 Dec 30;14(1):31668. doi: 10.1038/s41598-024-81188-2.

Abstract

Immune checkpoint inhibitor (ICI) treatment has proven successful for advanced melanoma, but is associated with potentially severe toxicity and high costs. Accurate biomarkers for response are lacking. The present work is the first to investigate the value of deep learning on CT imaging of metastatic lesions for predicting ICI treatment outcomes in advanced melanoma. Adult patients that were treated with ICI for advanced melanoma were retrospectively identified from ten participating centers. A deep learning model (DLM) was trained on volumes of lesions on baseline CT to predict clinical benefit. The DLM was compared to and combined with a model of known clinical predictors (presence of liver and brain metastasis, level of lactate dehydrogenase, performance status and number of affected organs). A total of 730 eligible patients with 2722 lesions were included. The DLM reached an area under the receiver operating characteristic (AUROC) of 0.607 [95%CI 0.565-0.648]. In comparison, a model of clinical predictors reached an AUROC of 0.635 [95%CI 0.59 -0.678]. The combination model reached an AUROC of 0.635 [95% CI 0.595-0.676]. Differences in AUROC were not statistically significant. The output of the DLM was significantly correlated with four of the five input variables of the clinical model. The DLM reached a statistically significant discriminative value, but was unable to improve over known clinical predictors. The present work shows that the assessment over known clinical predictors is an essential step for imaging-based prediction and brings important nuance to the almost exclusively positive findings in this field.

摘要

免疫检查点抑制剂(ICI)治疗已被证明对晚期黑色素瘤有效,但会带来潜在的严重毒性和高昂成本。目前仍缺乏用于预测疗效的准确生物标志物。本研究首次探讨了深度学习在转移性病变CT成像上对预测晚期黑色素瘤ICI治疗结果的价值。我们从十个参与中心回顾性地识别出接受ICI治疗的晚期黑色素瘤成年患者。基于基线CT扫描的病变体积训练了一个深度学习模型(DLM)来预测临床获益。将DLM与已知临床预测指标(肝转移和脑转移的存在、乳酸脱氢酶水平、体能状态和受累器官数量)的模型进行比较,并将二者结合。共纳入730例符合条件的患者,其病变数量为2722个。DLM的受试者工作特征曲线下面积(AUROC)为0.607 [95%CI 0.565 - 0.648]。相比之下,临床预测指标模型的AUROC为0.635 [95%CI 0.59 - 0.678]。联合模型的AUROC为0.635 [95%CI 0.595 - 0.676]。AUROC的差异无统计学意义。DLM的输出与临床模型五个输入变量中的四个显著相关。DLM具有统计学上显著的判别价值,但未能优于已知的临床预测指标。本研究表明,对已知临床预测指标的评估是基于影像学预测的关键步骤,并为该领域几乎全为阳性的研究结果带来了重要的细微差别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cca/11686296/4cf1cc6736e8/41598_2024_81188_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验