Goldstein M A, Michael L H, Schroeter J P, Sass R L
FASEB J. 1987 Aug;1(2):133-42. doi: 10.1096/fasebj.1.2.3609610.
The Z band in skeletal muscle has two distinct structural states--a relaxed (small square or ss) form and a maximally activated (basket weave or bw) form. We have examined by electron microscopy and optical diffraction Z lattice forms and dimensions and A band spacings in relaxed, tetanized, stretched, and stretched-and-tetanized rat soleus muscle. We have tested the independent contributions of passive load, active tension, and sarcomere length to Z band state. As the A band spacing decreased with increasing load and increasing sarcomere length in the untetanized muscles, the Z lattice remained in the ss form and the Z spacing changed only slightly. Computer-enhanced images from digitized electron micrographs showed that the ss Z lattice resisted deformation regardless of load or method of stretching. In contrast, when the muscle was tetanized at sarcomere lengths of up to 2.7 microns, the Z lattice assumed the bw form and the Z spacing was increased by 20%. Regardless of lattice form, Z spacing did not vary significantly with sarcomere length. Images from freeze-substituted preparations showed both lattice forms comparable to those in images from glutaraldehyde-fixed muscles. Thus, Z band state appears to be a function of the presence (or absence) of active tension. Our previous three-dimensional model is compatible with these observations and with the sub-structures revealed by computer-enhanced images of both lattice forms.