Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India.
Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India.
Int J Biol Macromol. 2022 Nov 30;221:653-664. doi: 10.1016/j.ijbiomac.2022.09.043. Epub 2022 Sep 9.
Helicases are ATP-driven molecular machines that directionally remodel nucleic acid polymers in all three domains of life. They are responsible for resolving double-stranded DNA (dsDNA) into single-strands, which is essential for DNA replication, nucleotide excision repair, and homologous recombination. RecD2 from Deinococcus radiodurans (DrRecD2) has important contributions to the organism's unusually high tolerance to gamma radiation and hydrogen peroxide. Although the results from X-ray Crystallography studies have revealed the structural characteristics of the protein, direct experimental evidence regarding the dynamics of the DNA unwinding process by DrRecD2 in the context of other accessory proteins is yet to be found. In this study, we have probed the exact binding event and processivity of DrRecD2 at single-molecule resolution using Protein-induced fluorescence enhancement (smPIFE) and Forster resonance energy transfer (smFRET). We have found that the protein prefers to bind at the 5' terminal end of the single-stranded DNA (ssDNA) by Drift and has helicase activity even in absence of ATP. However, a faster and iterative mode of DNA unwinding was evident in presence of ATP. The rate of translocation of the protein was found to be slower on dsDNA compared to ssDNA. We also showed that DrRecD2 is recruited at the binding site by the single-strand binding protein (SSB) and during the unwinding, it can displace RecA from ssDNA.
解旋酶是一种 ATP 驱动的分子机器,能够在所有三个生命领域中定向重塑核酸聚合物。它们负责将双链 DNA(dsDNA)解旋成单链,这对于 DNA 复制、核苷酸切除修复和同源重组至关重要。来自 Deinococcus radiodurans 的 RecD2(DrRecD2)对该生物体对γ射线和过氧化氢的异常高耐受性有重要贡献。尽管 X 射线晶体学研究的结果揭示了该蛋白质的结构特征,但在其他辅助蛋白的背景下,关于 DrRecD2 解旋 DNA 过程的动力学的直接实验证据尚未找到。在这项研究中,我们使用蛋白质诱导荧光增强(smPIFE)和Förster 共振能量转移(smFRET)在单分子分辨率下探测了 DrRecD2 的精确结合事件和持续性。我们发现,该蛋白质更喜欢通过漂移结合在单链 DNA(ssDNA)的 5'末端,并具有解旋酶活性,即使没有 ATP 也是如此。然而,在存在 ATP 的情况下,DNA 解旋的速度更快且呈迭代模式。我们还发现,与 ssDNA 相比,该蛋白质在 dsDNA 上的迁移速度较慢。我们还表明,DrRecD2 被单链结合蛋白(SSB)招募到结合位点,并且在解旋过程中,它可以从 ssDNA 上置换 RecA。