Bernstein Douglas A, Eggington Julie M, Killoran Michael P, Misic Ana M, Cox Michael M, Keck James L
Department of Biomolecular Chemistry, 550 Medical Science Center, 1300 University Avenue, University of Wisconsin Medical School, Madison, WI 53706-1532, USA.
Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8575-80. doi: 10.1073/pnas.0401331101. Epub 2004 May 24.
Single-stranded DNA (ssDNA)-binding (SSB) proteins are uniformly required to bind and protect single-stranded intermediates in DNA metabolic pathways. All bacterial and eukaryotic SSB proteins studied to date oligomerize to assemble four copies of a conserved domain, called an oligonucleotide/oligosaccharide-binding (OB) fold, that cooperate in nonspecific ssDNA binding. The vast majority of bacterial SSB family members function as homotetramers, with each monomer contributing a single OB fold. However, SSB proteins from the Deinococcus-Thermus genera are exceptions to this rule, because they contain two OB folds per monomer. To investigate the structural consequences of this unusual arrangement, we have determined a 1.8-A-resolution x-ray structure of Deinococcus radiodurans SSB. The structure shows that D. radiodurans SSB comprises two OB domains linked by a beta-hairpin motif. The protein assembles a four-OB-fold arrangement by means of symmetric dimerization. In contrast to homotetrameric SSB proteins, asymmetry exists between the two OB folds of D. radiodurans SSB because of sequence differences between the domains. These differences appear to reflect specialized roles that have evolved for each domain. Extensive crystallographic contacts link D. radiodurans SSB dimers in an arrangement that has important implications for higher-order structures of the protein bound to ssDNA. This assembly utilizes the N-terminal OB domain and the beta-hairpin structure that is unique to Deinococcus and Thermus species SSB proteins. We hypothesize that differences between D. radiodurans SSB and homotetrameric bacterial SSB proteins may confer a selective advantage to D. radiodurans cells that aids viability in environments that challenge genomic stability.
单链DNA(ssDNA)结合(SSB)蛋白在DNA代谢途径中对于结合和保护单链中间体是普遍必需的。迄今为止研究的所有细菌和真核生物的SSB蛋白都会寡聚化,以组装四个保守结构域的拷贝,这个保守结构域称为寡核苷酸/寡糖结合(OB)折叠,它们在非特异性ssDNA结合中协同作用。绝大多数细菌SSB家族成员以同四聚体形式发挥作用,每个单体贡献一个单一的OB折叠。然而,嗜热栖热放线菌属的SSB蛋白是这条规则的例外,因为它们每个单体含有两个OB折叠。为了研究这种不同寻常排列的结构后果,我们测定了耐辐射奇异球菌SSB的1.8埃分辨率的X射线结构。该结构表明,耐辐射奇异球菌SSB由通过β-发夹基序连接的两个OB结构域组成。该蛋白通过对称二聚化组装成四个OB折叠的排列。与同四聚体SSB蛋白相反,由于结构域之间的序列差异,耐辐射奇异球菌SSB的两个OB折叠之间存在不对称性。这些差异似乎反映了每个结构域已经进化出的特殊作用。广泛的晶体学接触将耐辐射奇异球菌SSB二聚体连接在一起,这种排列对于与ssDNA结合的蛋白质的高阶结构具有重要意义。这种组装利用了N端OB结构域和嗜热栖热放线菌属SSB蛋白特有的β-发夹结构。我们推测,耐辐射奇异球菌SSB与同四聚体细菌SSB蛋白之间的差异可能赋予耐辐射奇异球菌细胞一种选择优势,有助于其在挑战基因组稳定性的环境中生存。