Suppr超能文献

利用生物电化学系统(BES)从废水中去除/回收氨/铵:综述

Ammonia/ammonium removal/recovery from wastewaters using bioelectrochemical systems (BES): A review.

作者信息

Lee Yu-Jen, Lin Bin-Le, Xue Mianqiang, Tsunemi Kiyotaka

机构信息

Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.

Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.

出版信息

Bioresour Technol. 2022 Nov;363:127927. doi: 10.1016/j.biortech.2022.127927. Epub 2022 Sep 10.

Abstract

This review updates the current research efforts on using BES to recover NH/NH, highlighting the novel configurations and introducing the working principles and the applications of microbial fuel cell (MFC), microbial electrolysis cell (MEC), microbial desalination cell (MDC), and microbial electrosynthesis cell (MESC) for NH/NH removal/recovery. However, commonly studied BES processes for NH/NH removal/recovery are energy intensive with external aeration needed for NH stripping being the largest energy input. In such a process bipolar membranes used for yielding a local alkaline pool recovering NH is not cost-effective. This gives a chance to microbial electrosynthesis which turned out to be a potential alternative option to approach circular bioeconomy. Furtherly, the reactor volume and NH/NH removal/recovery efficiency has a weakly positive correlation, indicating that there might be other factors controlling the reactor performance that are yet to be investigated.

摘要

本综述更新了当前利用生物电化学系统(BES)回收铵态氮(NH₄⁺/NH₃)的研究进展,重点介绍了新型构型,并阐述了微生物燃料电池(MFC)、微生物电解池(MEC)、微生物脱盐池(MDC)和微生物电合成池(MESC)在去除/回收铵态氮方面的工作原理及应用。然而,常用于铵态氮去除/回收的BES工艺能耗较高,其中用于氨汽提的外部曝气是最大的能量输入。在这样的工艺中,用于产生局部碱性池以回收氨的双极膜并不具有成本效益。这为微生物电合成提供了契机,事实证明它是实现循环生物经济的潜在替代选择。此外,反应器体积与铵态氮去除/回收效率呈弱正相关,这表明可能存在其他尚未研究的控制反应器性能的因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验