Subcoordinación de Sistemas de Saneamiento y Reutilización de Aguas Residuales, Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Progreso, Jiutepec, Morelos, C.P. 62550, México.
Facultad de Ingeniería, Universidad Nacional Autónoma de México, Paseo Cuauhnáhuac 8532, Progreso, Jiutepec, Morelos, C.P. 62550, México.
Bioprocess Biosyst Eng. 2024 Nov;47(11):1929-1950. doi: 10.1007/s00449-024-03079-0. Epub 2024 Aug 17.
The septic tank is the most commonly used decentralized wastewater treatment systems for household wastewater treatment in on-site applications. The removal rate of various pollutants is lower in different septic tank configurations. The integration of a microbial electrolysis cells (MEC) into septic tank or biofilm-based reactors can be a green and sustainable technology for household wastewater treatment and energy production. In this study, a 50-L septic tank was converted into a 50-L MEC coupled with biofilm-based reactor for simultaneous household wastewater treatment and hydrogen production. The biofilm-based reactor was integrated by an anaerobic packed-bed biofilm reactor (APBBR) and an aerobic moving bed biofilm reactor (aeMBBR). The MEC/APBBR/aeMBBR was evaluated at different organic loading rates (OLRs) by applying voltage of 0.7 and 1.0 V. Result showed that the increase of OLRs from 0.2 to 0.44 kg COD/m d did not affect organic matter removals. Nutrient and solids removal decreased with increasing OLR up to 0.44 kg COD/m d. Global removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total nitrogen (TN), ammoniacal nitrogen (NH), total phosphorus (TP) and total suspended solids (TSS) removal ranged from 81 to 84%, 84 to 85%, 53 to 68%, 88 to 98%, 11 to 30% and 76 to 88% respectively, was obtained in this study. The current density generated in the MEC from 0 to 0.41 A/m contributed to an increase in hydrogen production and pollutants removal. The maximum volumetric hydrogen production rate obtained in the MEC was 0.007 L/Ld (0.072 L/d). The integration of the MEC into biofilm-based reactors applying a voltage of 1.0 V generated different bioelectrochemical nitrogen and phosphorus transformations within the MEC, allowing a simultaneous denitrification-nitrification process with phosphorus removal.
化粪池是现场应用中最常用的分散式家庭废水处理系统。不同化粪池配置的各种污染物去除率较低。将微生物电解池(MEC)集成到化粪池或基于生物膜的反应器中,可以成为家庭废水处理和能源生产的绿色可持续技术。在这项研究中,将一个 50 升的化粪池改造成一个 50 升的 MEC 与基于生物膜的反应器相结合,用于同时处理家庭废水和生产氢气。基于生物膜的反应器通过厌氧填充床生物膜反应器(APBBR)和好氧移动床生物膜反应器(aeMBBR)进行集成。在 0.7 和 1.0 V 的电压下,通过施加不同的有机负荷率(OLR)来评估 MEC/APBBR/aeMBBR。结果表明,OLR 从 0.2 增加到 0.44 kg COD/m d 不会影响有机物去除。随着 OLR 增加到 0.44 kg COD/m d,养分和固体去除率降低。本研究中,化学需氧量(COD)、生化需氧量(BOD)、总氮(TN)、氨氮(NH)、总磷(TP)和总悬浮固体(TSS)的总去除率分别为 81%至 84%、84%至 85%、53%至 68%、88%至 98%、11%至 30%和 76%至 88%。从 0 到 0.41 A/m 的 MEC 产生的电流密度有助于增加氢气产量和污染物去除。在 MEC 中获得的最大体积产氢率为 0.007 L/Ld(0.072 L/d)。在 1.0 V 的电压下将 MEC 集成到基于生物膜的反应器中,在 MEC 内产生了不同的生物电化学氮和磷转化,允许同时进行反硝化-硝化过程和磷去除。