Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Hunan 416000, China.
ACS Appl Mater Interfaces. 2022 Sep 21;14(37):41809-41818. doi: 10.1021/acsami.2c13805. Epub 2022 Sep 12.
Antimicrobial nanomaterials hold great promise for bacteria-infected wound healing. However, it remains a challenge to balance antimicrobial efficacy and biocompatibility for these artificial antimicrobials. Here we employed biocompatible genetic molecule DNA as a building material to fabricate antimicrobial materials, including self-assembled Y-shaped DNA-silver nanocluster composite (Y-Ag) and Y-Ag hydrogel (Y-Ag-gel). We demonstrate that macroscopic and microcosmic DNA-Ag composites can effectively inhibit bacterial growth but do not affect cell proliferation in vitro. In particular, Y-Ag spray can speed up the process of wound healing in vivo. Considering the efficacy and advantages of DNA-based materials, our findings provide a promising route to fabricate a novel wound dressing such as spray and hydrogel for therapeutic wound healing.
抗菌纳米材料在治疗细菌感染的伤口方面具有广阔的前景。然而,对于这些人工抗菌剂来说,如何平衡抗菌效果和生物相容性仍然是一个挑战。在这里,我们利用生物相容性的遗传分子 DNA 作为构建材料,制备了抗菌材料,包括自组装的 Y 型 DNA-银纳米簇复合材料(Y-Ag)和 Y-Ag 水凝胶(Y-Ag-gel)。我们证明了宏观和微观的 DNA-Ag 复合材料可以有效地抑制细菌生长,但不会影响体外细胞增殖。特别是,Y-Ag 喷雾可以加速体内伤口愈合过程。考虑到基于 DNA 的材料的功效和优势,我们的研究结果为制备新型伤口敷料(如喷雾和水凝胶)提供了一种有前途的方法,以实现治疗性伤口愈合。