Suppr超能文献

基于自动特征提取变分自动编码器的 DNA 稳定纳米团簇的多目标设计。

Multi-Objective Design of DNA-Stabilized Nanoclusters Using Variational Autoencoders With Automatic Feature Extraction.

机构信息

Department of Computer Science, University at Albany-SUNY, Albany, New York 12222, United States.

Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States.

出版信息

ACS Nano. 2024 Oct 1;18(39):26997-27008. doi: 10.1021/acsnano.4c09640. Epub 2024 Sep 17.

Abstract

DNA-stabilized silver nanoclusters (Ag-DNAs) have sequence-tuned compositions and fluorescence colors. High-throughput experiments together with supervised machine learning models have recently enabled design of DNA templates that select for Ag-DNA properties, including near-infrared (NIR) emission that holds promise for deep tissue bioimaging. However, these existing models do not enable simultaneous selection of multiple Ag-DNA properties, and require significant expert input for feature engineering and class definitions. This work presents a model for multiobjective, continuous-property design of Ag-DNAs with automatic feature extraction, based on variational autoencoders (VAEs). This model is generative, i.e., it learns both the forward mapping from DNA sequence to Ag-DNA properties and the inverse mapping from properties to sequence, and is trained on an experimental data set of DNA sequences paired with Ag-DNA fluorescence properties. Experimental testing shows that the model enables effective design of Ag-DNA emission, including bright NIR Ag-DNAs with 4-fold greater abundance compared to training data. In addition, Shapley analysis is employed to discern learned nucleobase patterns that correspond to fluorescence color and brightness. This generative model can be adapted for a range of biomolecular systems with sequence-dependent properties, enabling precise design of emerging biomolecular nanomaterials.

摘要

DNA 稳定的银纳米团簇(Ag-DNAs)具有序列可调的组成和荧光颜色。最近,高通量实验和有监督的机器学习模型已经能够设计出 DNA 模板,这些模板可以选择 Ag-DNA 的特性,包括近红外(NIR)发射,这为深层组织生物成像提供了希望。然而,这些现有的模型不能同时选择多个 Ag-DNA 特性,并且需要大量的专家输入来进行特征工程和类别定义。本工作提出了一种基于变分自编码器(VAEs)的 Ag-DNAs 多目标、连续特性设计的模型,具有自动特征提取功能。该模型是生成式的,即它既学习了 DNA 序列到 Ag-DNA 特性的正向映射,又学习了从特性到序列的反向映射,并在 DNA 序列与 Ag-DNA 荧光特性配对的实验数据集上进行了训练。实验测试表明,该模型能够有效地设计 Ag-DNA 的发射,包括比训练数据亮 4 倍的明亮近红外 Ag-DNAs。此外,Shapley 分析被用来辨别与荧光颜色和亮度相对应的碱基模式。这种生成式模型可以适应一系列具有序列依赖性特性的生物分子系统,从而能够精确设计新兴的生物分子纳米材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db64/11447918/ac2d944feaf7/nn4c09640_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验