School of Life Sciences, Arizona State University, Tempe, United States.
Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, United States.
Elife. 2022 Sep 13;11:e82129. doi: 10.7554/eLife.82129.
The scaling of respiratory structures has been hypothesized to be a major driving factor in the evolution of many aspects of animal physiology. Here, we provide the first assessment of the scaling of the spiracles in insects using 10 scarab beetle species differing 180× in mass, including some of the most massive extant insect species. Using X-ray microtomography, we measured the cross-sectional area and depth of all eight spiracles, enabling the calculation of their diffusive and advective capacities. Each of these metrics scaled with geometric isometry. Because diffusive capacities scale with lower slopes than metabolic rates, the largest beetles measured require 10-fold higher gradients across the spiracles to sustain metabolism by diffusion compared to the smallest species. Large beetles can exchange sufficient oxygen for resting metabolism by diffusion across the spiracles, but not during flight. In contrast, spiracular advective capacities scale similarly or more steeply than metabolic rates, so spiracular advective capacities should match or exceed respiratory demands in the largest beetles. These data illustrate a general principle of gas exchange: scaling of respiratory transport structures with geometric isometry diminishes the potential for diffusive gas exchange but enhances advective capacities; combining such structural scaling with muscle-driven ventilation allows larger animals to achieve high metabolic rates when active.
呼吸结构的缩放被假设为动物生理学许多方面进化的主要驱动因素。在这里,我们使用 10 种不同质量的金龟子甲虫(包括一些最大的现存昆虫物种)对昆虫的气门进行了首次缩放评估。使用 X 射线微断层扫描,我们测量了所有 8 个气门的横截面积和深度,从而可以计算它们的扩散和对流能力。这些指标中的每一个都与几何等比缩放。由于扩散能力的斜率低于代谢率,与最小的物种相比,测量的最大甲虫需要 10 倍更高的气门梯度才能通过扩散维持代谢。大型甲虫可以通过气门的扩散来交换足够的氧气来维持静息代谢,但在飞行中则不行。相比之下,气门的对流能力与代谢率相似或更陡峭地缩放,因此在最大的甲虫中,气门的对流能力应该与呼吸需求相匹配或超过呼吸需求。这些数据说明了气体交换的一般原则:呼吸运输结构的缩放与几何等比缩放减少了扩散气体交换的潜力,但增强了对流能力;将这种结构缩放与肌肉驱动的通风相结合,使较大的动物在活跃时能够达到较高的代谢率。