Suppr超能文献

利用深度学习和电子健康记录检测儿科患者的努南综合征。

Using deep learning and electronic health records to detect Noonan syndrome in pediatric patients.

机构信息

Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati Children's Research Foundation, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.

Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.

出版信息

Genet Med. 2022 Nov;24(11):2329-2337. doi: 10.1016/j.gim.2022.08.002. Epub 2022 Sep 13.

Abstract

PURPOSE

The variable expressivity and multisystem features of Noonan syndrome (NS) make it difficult for patients to obtain a timely diagnosis. Genetic testing can confirm a diagnosis, but underdiagnosis is prevalent owing to a lack of recognition and referral for testing. Our study investigated the utility of using electronic health records (EHRs) to identify patients at high risk of NS.

METHODS

Using diagnosis texts extracted from Cincinnati Children's Hospital's EHR database, we constructed deep learning models from 162 NS cases and 16,200 putative controls. Performance was evaluated on 2 independent test sets, one containing patients with NS who were previously diagnosed and the other containing patients with undiagnosed NS.

RESULTS

Our novel method performed significantly better than the previous method, with the convolutional neural network model achieving the highest area under the precision-recall curve in both test sets (diagnosed: 0.43, undiagnosed: 0.16).

CONCLUSION

The results suggested the validity of using text-based deep learning methods to analyze EHR and showed the value of this approach as a potential tool to identify patients with features of rare diseases. Given the paucity of medical geneticists, this has the potential to reduce disease underdiagnosis by prioritizing patients who will benefit most from a genetics referral.

摘要

目的

努南综合征(NS)的表现度可变和多系统特征使得患者难以获得及时诊断。基因检测可以确认诊断,但由于缺乏认识和检测转诊,漏诊很常见。我们的研究调查了使用电子健康记录(EHR)识别 NS 高危患者的效用。

方法

我们使用从辛辛那提儿童医院电子健康记录数据库中提取的诊断文本,从 162 例 NS 病例和 16200 例疑似对照中构建了深度学习模型。在两个独立的测试集中评估了性能,一个包含以前诊断过的 NS 患者,另一个包含未诊断的 NS 患者。

结果

我们的新方法明显优于以前的方法,卷积神经网络模型在两个测试集中的准确率-召回率曲线下面积最高(诊断:0.43,未诊断:0.16)。

结论

结果表明使用基于文本的深度学习方法分析电子健康记录的有效性,并显示了该方法作为识别具有罕见疾病特征的患者的潜在工具的价值。鉴于医学遗传学家的稀缺,这有可能通过优先考虑最需要遗传咨询的患者来减少疾病漏诊。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验