Suppr超能文献

工程化跨损伤 DNA 合成途径可实现. 中的可控 C 到 G 和 C 到 A 碱基编辑

Engineering of the Translesion DNA Synthesis Pathway Enables Controllable C-to-G and C-to-A Base Editing in .

机构信息

Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.

National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.

出版信息

ACS Synth Biol. 2022 Oct 21;11(10):3368-3378. doi: 10.1021/acssynbio.2c00265. Epub 2022 Sep 13.

Abstract

Expanding the base conversion type is expected to largely broaden the application of base editing, whereas it requires decipherment of the machinery controlling the editing outcome. Here, we discovered that the DNA polymerase V-mediated translesion DNA synthesis (TLS) pathway controlled the C-to-A editing by a glycosylase base editor (GBE) in . However, C-to-G conversion was surprisingly found to be the main product of the GBE in and subsequent gene inactivation identified the decisive TLS enzymes. Introduction of the TLS pathway into a TLS-deficient mutant completely changed the GBE outcome from C-to-G to C-to-A. Combining the canonical C-to-T editor, a pioneering C-to-N base editing toolbox was established in . The expanded base conversion capability produces greater genetic diversity and promotes the application of base editing in gene inactivation and protein evolution. This study demonstrates the possibility of engineering TLS systems to develop advanced genome editing tools.

摘要

扩展碱基转换类型有望极大地拓宽碱基编辑的应用范围,而这需要破译控制编辑结果的机制。在这里,我们发现,聚合酶 V 介导的跨损伤 DNA 合成(TLS)途径控制了糖苷酶碱基编辑器(GBE)在 中的 C 到 A 编辑。然而,令人惊讶的是,我们发现 GBE 在 中主要产生 C 到 G 的转换,随后的基因失活鉴定出决定性的 TLS 酶。将 TLS 途径引入缺乏 TLS 的 突变体中,完全将 GBE 的结果从 C 到 G 改变为 C 到 A。在 中结合经典的 C 到 T 编辑器,建立了一个开创性的 C 到 N 碱基编辑工具包。扩展的碱基转换能力产生了更大的遗传多样性,并促进了碱基编辑在基因失活和蛋白质进化中的应用。这项研究证明了工程 TLS 系统以开发先进的基因组编辑工具的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验