Suppr超能文献

基于数据驱动的极端梯度提升机器学习模型,用于预测与气象驱动因素相关的 COVID-19 传播。

A data-driven eXtreme gradient boosting machine learning model to predict COVID-19 transmission with meteorological drivers.

机构信息

Department of Statistics, Begum Rokeya University, Rangpur, Rangpur, Bangladesh.

出版信息

PLoS One. 2022 Sep 13;17(9):e0273319. doi: 10.1371/journal.pone.0273319. eCollection 2022.

Abstract

COVID-19 pandemic has become a global major public health concern. Examining the meteorological risk factors and accurately predicting the incidence of the COVID-19 pandemic is an extremely important challenge. Therefore, in this study, we analyzed the relationship between meteorological factors and COVID-19 transmission in SAARC countries. We also compared the predictive accuracy of Autoregressive Integrated Moving Average (ARIMAX) and eXtreme Gradient Boosting (XGBoost) methods for precise modelling of COVID-19 incidence. We compiled a daily dataset including confirmed COVID-19 case counts, minimum and maximum temperature (°C), relative humidity (%), surface pressure (kPa), precipitation (mm/day) and maximum wind speed (m/s) from the onset of the disease to January 29, 2022, in each country. The data were divided into training and test sets. The training data were used to fit ARIMAX model for examining significant meteorological risk factors. All significant factors were then used as covariates in ARIMAX and XGBoost models to predict the COVID-19 confirmed cases. We found that maximum temperature had a positive impact on the COVID-19 transmission in Afghanistan (β = 11.91, 95% CI: 4.77, 19.05) and India (β = 0.18, 95% CI: 0.01, 0.35). Surface pressure had a positive influence in Pakistan (β = 25.77, 95% CI: 7.85, 43.69) and Sri Lanka (β = 411.63, 95% CI: 49.04, 774.23). We also found that the XGBoost model can help improve prediction of COVID-19 cases in SAARC countries over the ARIMAX model. The study findings will help the scientific communities and policymakers to establish a more accurate early warning system to control the spread of the pandemic.

摘要

新冠疫情大流行已成为全球主要公共卫生关注点。研究气象风险因素并准确预测新冠疫情的发病情况是极具挑战的。因此,本研究旨在分析南亚区域合作联盟(SAARC)国家气象因素与新冠病毒传播之间的关系,并比较自回归求和移动平均(ARIMA)和极端梯度提升(XGBoost)模型在精确预测新冠发病方面的预测精度。我们编译了一份从疾病开始到 2022 年 1 月 29 日各国每日确诊病例数、最低和最高温度(°C)、相对湿度(%)、地面气压(kPa)、降水量(mm/天)和最大风速(m/s)的数据集。将数据分为训练集和测试集。使用训练数据拟合 ARIMA 模型,以检验显著气象风险因素。将所有显著因素作为协变量纳入 ARIMA 和 XGBoost 模型中,以预测新冠确诊病例。结果表明,最高温度对阿富汗(β=11.91,95%CI:4.77,19.05)和印度(β=0.18,95%CI:0.01,0.35)的新冠传播有正向影响。地面气压对巴基斯坦(β=25.77,95%CI:7.85,43.69)和斯里兰卡(β=411.63,95%CI:49.04,774.23)的新冠传播有正向影响。我们还发现,XGBoost 模型可以帮助提高对 SAARC 国家新冠发病情况的预测能力,优于 ARIMA 模型。本研究结果将有助于科学界和决策者建立更准确的早期预警系统,以控制疫情蔓延。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e88a/9469970/992c7caae9f2/pone.0273319.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验