Suppr超能文献

基于多主体的具有弹性约束的交通流最优均衡选择。

Multi-agent based optimal equilibrium selection with resilience constraints for traffic flow.

机构信息

School of Transportation, Southeast University, Nanjing, 210096, China.

Scientific Research Institute of Multiprocessor Computer Systems, Southern Federal University, 2, Chekhov st., Taganrog, 347928, Russia.

出版信息

Neural Netw. 2022 Nov;155:308-317. doi: 10.1016/j.neunet.2022.08.013. Epub 2022 Aug 19.

Abstract

Traffic guidance and traffic control are effective means to alleviate traffic problems. Formulating effective traffic guidance measures can improve the utilization rate of road resources and optimize the performance of the entire traffic network. Assuming that the traffic coordinator can capture traffic flow information in real-time utilizing sensors installed on each road, we consider the strong resilience constraints to construct an optimal selection problem of balanced flow in the traffic network. Based on multi-agent modeling, each agent has access to the corresponding traffic information of each link. We design a distributed optimization algorithm to tackle this optimization problem. In addition to the inherent advantages of distributed multi-agent algorithms, the communication topology among the sensors is allowed to be time-varying, which is more consistent with reality. To prove the effectiveness of the proposed algorithm, we also give a numerical simulation in the multi-agent environment. It should be reiterated that the optimization problem studied in this paper mainly focuses on traffic managers' perspectives. The goal of the studied optimization problem is to minimize the overall cost of the traffic network by adjusting the optimal equilibrium traffic flow. This study provides a reference for solving congestion optimization in today's cities.

摘要

交通疏导和交通控制是缓解交通问题的有效手段。制定有效的交通疏导措施可以提高道路资源的利用率,优化整个交通网络的性能。假设交通协调员可以利用安装在每条道路上的传感器实时捕捉交通流信息,我们考虑构建交通网络中平衡流量的最优选择问题的强弹性约束。基于多智能体建模,每个智能体都可以访问每个链路的相应交通信息。我们设计了一种分布式优化算法来解决这个优化问题。除了分布式多智能体算法的固有优势外,还允许传感器之间的通信拓扑随时间变化,这更符合实际情况。为了证明所提出算法的有效性,我们还在多智能体环境中进行了数值模拟。需要重申的是,本文研究的优化问题主要侧重于交通管理者的视角。所研究的优化问题的目标是通过调整最优均衡交通流量来最小化交通网络的总成本。本研究为解决当今城市的拥塞优化问题提供了参考。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验