Geng Liang, Li Wenjun, Liu Xintong, Li Xinyang, Fan Hongxia, Qiu Hong, Ma Xiaohui, Dong Mei
Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China.
Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China.
J Colloid Interface Sci. 2023 Jan;629(Pt A):723-732. doi: 10.1016/j.jcis.2022.09.029. Epub 2022 Sep 8.
Novel Bi/BiMoO/ZnInS is not only cost-effective compared to noble metals, but also shows superior hydrogen production. Comprehensive characterization illustrated that the S-scheme heterojunction and excellent photon utilization capability of the photocatalyst were the main factors that enhanced its hydrogen production performance. The X-ray photoelectron spectroscopy illustrated the elemental composition of the catalyst and the presence of Bi metal in ternary heterojunction. The photoluminescence and electrochemical characterization proved that S-scheme heterojunction Bi/BiMoO/ZnInS promoted the separation of photogenerated carriers. The amount of hydrogen produced by Bi/BiMoO/ZnInS was 2306.90 µmol g under visible light illumination for 5 h. It was 4.3, 29.6 and 2.2 times more than those of ZnInS, BiMoO/ZnInS and Pt/ZnInS, respectively. The excellent hydrogen production activity of the ternary complexes may be attributed to the following: (1) Bi/BiMoO could replace precious metals to enhance reactive sites of ZnInS. (2) Metal Bi could produce surface plasmon resonance effect facilitating light absorption, and Bi acted as an electron bridge promoting charge transfer. (3) The charge transfer mechanism of S-scheme heterojunction and hot electrons injection process of Bi metal synergistically drove the photocatalytic hydrogen production. This work provides an innovative method for the construction of visible-light-driven photocatalysts without using precious metals.
新型Bi/BiMoO/ZnInS不仅与贵金属相比具有成本效益,而且还表现出卓越的产氢性能。综合表征表明,光催化剂的S型异质结和优异的光子利用能力是提高其产氢性能的主要因素。X射线光电子能谱说明了催化剂的元素组成以及三元异质结中Bi金属的存在。光致发光和电化学表征证明,S型异质结Bi/BiMoO/ZnInS促进了光生载流子的分离。在可见光照射5小时的情况下,Bi/BiMoO/ZnInS产生的氢气量为2306.90 μmol g。分别是ZnInS、BiMoO/ZnInS和Pt/ZnInS的4.3倍、29.6倍和2.2倍。三元复合物优异的产氢活性可能归因于以下几点:(1) Bi/BiMoO可以替代贵金属以增强ZnInS的反应位点。(2) 金属Bi可以产生表面等离子体共振效应促进光吸收,并且Bi充当促进电荷转移的电子桥。(3) S型异质结的电荷转移机制和Bi金属的热电子注入过程协同驱动光催化产氢。这项工作为构建不使用贵金属的可见光驱动光催化剂提供了一种创新方法。