Kong Xu, Wang Kai, Yu Hai, Jin Zhiliang
School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P.R. China.
Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P.R. China.
Nanoscale. 2024 Sep 26;16(37):17505-17518. doi: 10.1039/d4nr02587c.
Utilizing the design of heterojunction structures formed between photocatalysts to enhance photoelectrochemical performance represents an effective strategy for improving the efficiency of photocatalytic hydrogen production. In this work, a straightforward one-step solvothermal method was employed to embed NENU-5 nano-octahedra within ZnInS nanoflowers, forming ZnInS@NENU-5 heterostructures. Hydrogen production tests conducted over 5 h revealed a hydrogen evolution activity of 5282.14 μmol g h in triethanolamine (TEOA) solution at pH = 9, which is 4.9 times and 264 times higher than that of pure ZnInS and NENU-5, respectively. The significant enhancement in the photocatalytic performance indicates that the constructed Z-scheme heterojunction increases the active sites on the catalyst surface and plays a crucial role in photocarrier transfer. Furthermore, the formation of the Z-scheme heterojunction is confirmed through Mott-Schottky (M-S) analysis, ultraviolet photoelectron spectroscopy (UPS), and valence band X-ray photoelectron spectroscopy (VB-XPS). The effective charge transfer at the ZnInS@NENU-5 heterojunction interface is validated based on X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) analysis, and density functional theory (DFT) calculations. In summary, this work offers an effective approach to designing novel heterojunction photocatalysts by combining MOF materials with bimetallic sulfides, thereby promoting the efficiency of photocatalytic hydrogen production.
利用光催化剂之间形成的异质结结构设计来提高光电化学性能,是提高光催化产氢效率的有效策略。在这项工作中,采用一种简单的一步溶剂热法将NENU-5纳米八面体嵌入ZnInS纳米花中,形成ZnInS@NENU-5异质结构。在5小时内进行的产氢测试表明,在pH = 9的三乙醇胺(TEOA)溶液中,析氢活性为5282.14 μmol g h,分别比纯ZnInS和NENU-5高4.9倍和264倍。光催化性能的显著提高表明,构建的Z型异质结增加了催化剂表面的活性位点,并在光载流子转移中起关键作用。此外,通过莫特-肖特基(M-S)分析、紫外光电子能谱(UPS)和价带X射线光电子能谱(VB-XPS)证实了Z型异质结的形成。基于X射线光电子能谱(XPS)、光致发光(PL)分析和密度泛函理论(DFT)计算,验证了ZnInS@NENU-5异质结界面处的有效电荷转移。总之,这项工作提供了一种将MOF材料与双金属硫化物相结合来设计新型异质结光催化剂的有效方法,从而提高光催化产氢效率。