Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
Sci Rep. 2022 Sep 13;12(1):15402. doi: 10.1038/s41598-022-19753-w.
This study aimed to develop deep learning models that automatically detect impacted mesiodens on periapical radiographs of primary and mixed dentition using the YOLOv3, RetinaNet, and EfficientDet-D3 algorithms and to compare their performance. Periapical radiographs of 600 pediatric patients (age range, 3-13 years) with mesiodens were used as a training and validation dataset. Deep learning models based on the YOLOv3, RetinaNet, and EfficientDet-D3 algorithms for detecting mesiodens were developed, and each model was trained 300 times using training (540 images) and validation datasets (60 images). The performance of each model was evaluated based on accuracy, sensitivity, and specificity using 120 test images (60 periapical radiographs with mesiodens and 60 periapical radiographs without mesiodens). The accuracy of the YOLOv3, RetinaNet, and EfficientDet-D3 models was 97.5%, 98.3%, and 99.2%, respectively. The sensitivity was 100% for both the YOLOv3 and RetinaNet models and 98.3% for the EfficientDet-D3 model. The specificity was 100%, 96.7%, and 95.0% for the EfficientDet-D3, RetinaNet, and YOLOv3 models, respectively. The proposed models using three deep learning algorithms to detect mesiodens on periapical radiographs showed good performance. The EfficientDet-D3 model showed the highest accuracy for detecting mesiodens on periapical radiographs.
本研究旨在开发深度学习模型,使用 YOLOv3、RetinaNet 和 EfficientDet-D3 算法自动检测乳牙和混合牙列的根尖片上的埋伏中切牙,并比较它们的性能。使用 600 名患有中切牙埋伏的儿科患者(年龄 3-13 岁)的根尖片作为训练和验证数据集。基于 YOLOv3、RetinaNet 和 EfficientDet-D3 算法开发了用于检测中切牙埋伏的深度学习模型,每个模型使用训练数据集(540 张图像)和验证数据集(60 张图像)进行了 300 次训练。使用 120 张测试图像(60 张有中切牙埋伏的根尖片和 60 张无中切牙埋伏的根尖片)评估每个模型的准确性、敏感性和特异性。YOLOv3、RetinaNet 和 EfficientDet-D3 模型的准确性分别为 97.5%、98.3%和 99.2%。YOLOv3 和 RetinaNet 模型的敏感性均为 100%,EfficientDet-D3 模型的敏感性为 98.3%。EfficientDet-D3、RetinaNet 和 YOLOv3 模型的特异性分别为 100%、96.7%和 95.0%。使用三种深度学习算法在根尖片上检测中切牙埋伏的提出的模型表现出良好的性能。EfficientDet-D3 模型在检测根尖片中的中切牙埋伏方面表现出最高的准确性。