Suppr超能文献

使用人工智能自动检测全景片上的正中牙。

Automatic detection of mesiodens on panoramic radiographs using artificial intelligence.

机构信息

Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, South Korea.

Department of Oral and Maxillofacial Surgery, Gangnam Severance Hospital, Yonsei University College of Dentistry, Seoul, South Korea.

出版信息

Sci Rep. 2021 Nov 29;11(1):23061. doi: 10.1038/s41598-021-02571-x.

Abstract

This study aimed to develop an artificial intelligence model that can detect mesiodens on panoramic radiographs of various dentition groups. Panoramic radiographs of 612 patients were used for training. A convolutional neural network (CNN) model based on YOLOv3 for detecting mesiodens was developed. The model performance according to three dentition groups (primary, mixed, and permanent dentition) was evaluated, both internally (130 images) and externally (118 images), using a multi-center dataset. To investigate the effect of image preprocessing, contrast-limited histogram equalization (CLAHE) was applied to the original images. The accuracy of the internal test dataset was 96.2% and that of the external test dataset was 89.8% in the original images. For the primary, mixed, and permanent dentition, the accuracy of the internal test dataset was 96.7%, 97.5%, and 93.3%, respectively, and the accuracy of the external test dataset was 86.7%, 95.3%, and 86.7%, respectively. The CLAHE images yielded less accurate results than the original images in both test datasets. The proposed model showed good performance in the internal and external test datasets and had the potential for clinical use to detect mesiodens on panoramic radiographs of all dentition types. The CLAHE preprocessing had a negligible effect on model performance.

摘要

本研究旨在开发一种人工智能模型,以检测各种牙列群体全景片上的正中牙。使用 612 名患者的全景片进行训练。开发了一种基于 YOLOv3 的用于检测正中牙的卷积神经网络(CNN)模型。使用多中心数据集对内(130 张图像)和对外(118 张图像)分别评估了根据三个牙列组(乳牙、混合牙和恒牙)的模型性能。为了研究图像预处理的效果,对原始图像应用了对比度受限的直方图均衡化(CLAHE)。在原始图像中,内部测试数据集的准确率为 96.2%,外部测试数据集的准确率为 89.8%。对于乳牙、混合牙和恒牙,内部测试数据集的准确率分别为 96.7%、97.5%和 93.3%,外部测试数据集的准确率分别为 86.7%、95.3%和 86.7%。CLAHE 图像在两个测试数据集的准确率均低于原始图像。所提出的模型在内部和外部测试数据集上表现出良好的性能,有潜力在临床中用于检测所有牙列类型的全景片上的正中牙。CLAHE 预处理对模型性能的影响可以忽略不计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/773d/8629996/364303396e30/41598_2021_2571_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验