通过两阶段神经网络在大规模全脑图像中进行3D体细胞检测
3D Soma Detection in Large-Scale Whole Brain Images via a Two-Stage Neural Network.
作者信息
Wei Xiaodan, Liu Qinghao, Liu Min, Wang Yaonan, Meijering Erik
出版信息
IEEE Trans Med Imaging. 2023 Jan;42(1):148-157. doi: 10.1109/TMI.2022.3206605. Epub 2022 Dec 29.
3D soma detection in whole brain images is a critical step for neuron reconstruction. However, existing soma detection methods are not suitable for whole mouse brain images with large amounts of data and complex structure. In this paper, we propose a two-stage deep neural network to achieve fast and accurate soma detection in large-scale and high-resolution whole mouse brain images (more than 1TB). For the first stage, a lightweight Multi-level Cross Classification Network (MCC-Net) is proposed to filter out images without somas and generate coarse candidate images by combining the advantages of the multi convolution layer's feature extraction ability. It can speed up the detection of somas and reduce the computational complexity. For the second stage, to further obtain the accurate locations of somas in the whole mouse brain images, the Scale Fusion Segmentation Network (SFS-Net) is developed to segment soma regions from candidate images. Specifically, the SFS-Net captures multi-scale context information and establishes a complementary relationship between encoder and decoder by combining the encoder-decoder structure and a 3D Scale-Aware Pyramid Fusion (SAPF) module for better segmentation performance. The experimental results on three whole mouse brain images verify that the proposed method can achieve excellent performance and provide the reconstruction of neurons with beneficial information. Additionally, we have established a public dataset named WBMSD, including 798 high-resolution and representative images ( 256 ×256 ×256 voxels) from three whole mouse brain images, dedicated to the research of soma detection, which will be released along with this paper.
全脑图像中的三维胞体检测是神经元重建的关键步骤。然而,现有的胞体检测方法并不适用于具有大量数据和复杂结构的全小鼠脑图像。在本文中,我们提出了一种两阶段深度神经网络,以在大规模、高分辨率的全小鼠脑图像(超过1TB)中实现快速、准确的胞体检测。对于第一阶段,提出了一种轻量级的多级交叉分类网络(MCC-Net),通过结合多卷积层的特征提取能力优势,滤除无胞体的图像并生成粗略的候选图像。它可以加快胞体检测速度并降低计算复杂度。对于第二阶段,为了进一步在全小鼠脑图像中获得胞体的准确位置,开发了尺度融合分割网络(SFS-Net),从候选图像中分割出胞体区域。具体而言,SFS-Net通过结合编码器-解码器结构和三维尺度感知金字塔融合(SAPF)模块来捕捉多尺度上下文信息,并在编码器和解码器之间建立互补关系,以实现更好的分割性能。在三张全小鼠脑图像上的实验结果验证了所提方法能够取得优异的性能,并为神经元重建提供有益信息。此外,我们还建立了一个名为WBMSD的公共数据集,包括来自三张全小鼠脑图像的798张高分辨率且具有代表性的图像(256×256×256体素),专门用于胞体检测研究,该数据集将与本文一同发布。