Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America.
Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America.
PLoS Pathog. 2022 Sep 14;18(9):e1010803. doi: 10.1371/journal.ppat.1010803. eCollection 2022 Sep.
Efforts to control the global malaria health crisis are undermined by antimalarial resistance. Identifying mechanisms of resistance will uncover the underlying biology of the Plasmodium falciparum malaria parasites that allow evasion of our most promising therapeutics and may reveal new drug targets. We utilized fosmidomycin (FSM) as a chemical inhibitor of plastidial isoprenoid biosynthesis through the methylerythritol phosphate (MEP) pathway. We have thus identified an unusual metabolic regulation scheme in the malaria parasite through the essential glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Two parallel genetic screens converged on independent but functionally analogous resistance alleles in GAPDH. Metabolic profiling of FSM-resistant gapdh mutant parasites indicates that neither of these mutations disrupt overall glycolytic output. While FSM-resistant GAPDH variant proteins are catalytically active, they have reduced assembly into the homotetrameric state favored by wild-type GAPDH. Disrupted oligomerization of FSM-resistant GAPDH variant proteins is accompanied by altered enzymatic cooperativity and reduced susceptibility to inhibition by free heme. Together, our data identifies a new genetic biomarker of FSM-resistance and reveals the central role of GAPDH in MEP pathway control and antimalarial sensitivity.
控制全球疟疾健康危机的努力因抗疟药物耐药性而受到破坏。确定耐药机制将揭示疟原虫逃避我们最有前途的治疗方法的潜在生物学特性,并可能揭示新的药物靶点。我们利用 fosmidomycin(FSM)作为通过甲基赤藓醇磷酸(MEP)途径的质体异戊烯基生物合成的化学抑制剂。因此,我们通过必需的糖酵解酶甘油醛 3-磷酸脱氢酶(GAPDH)在疟原虫中发现了一种不寻常的代谢调节方案。两种平行的遗传筛选都集中在 GAPDH 中的独立但功能类似的抗性等位基因上。FSM 抗性 gapdh 突变体寄生虫的代谢谱分析表明,这些突变都没有破坏整体糖酵解输出。虽然 FSM 抗性 GAPDH 变体蛋白具有催化活性,但它们组装成野生型 GAPDH 偏好的同源四聚体状态的能力降低。FSM 抗性 GAPDH 变体蛋白的寡聚化破坏伴随着酶协同作用的改变和对游离血红素抑制的敏感性降低。总之,我们的数据确定了 FSM 耐药性的新遗传生物标志物,并揭示了 GAPDH 在 MEP 途径控制和抗疟药物敏感性中的核心作用。