Suppr超能文献

通过神经加速进化策略实现具有目标非线性响应的机械超材料的逆向设计

Inverse Design of Mechanical Metamaterials with Target Nonlinear Response via a Neural Accelerated Evolution Strategy.

作者信息

Deng Bolei, Zareei Ahmad, Ding Xiaoxiao, Weaver James C, Rycroft Chris H, Bertoldi Katia

机构信息

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

出版信息

Adv Mater. 2022 Oct;34(41):e2206238. doi: 10.1002/adma.202206238. Epub 2022 Sep 14.

Abstract

Materials with target nonlinear mechanical response can support the design of innovative soft robots, wearable devices, footwear, and energy-absorbing systems, yet it is challenging to realize them. Here, mechanical metamaterials based on hinged quadrilaterals are used as a platform to realize target nonlinear mechanical responses. It is first shown that by changing the shape of the quadrilaterals, the amount of internal rotations induced by the applied compression can be tuned, and a wide range of mechanical responses is achieved. Next, a neural network is introduced that provides a computationally inexpensive relationship between the parameters describing the geometry and the corresponding stress-strain response. Finally, it is shown that by combining the neural network with an evolution strategy, one can efficiently identify geometries resulting in a wide range of target nonlinear mechanical responses and design optimized energy-absorbing systems, soft robots, and morphing structures.

摘要

具有目标非线性力学响应的材料可支持创新型软体机器人、可穿戴设备、鞋类和能量吸收系统的设计,但要实现这些材料却具有挑战性。在此,基于铰接四边形的力学超材料被用作实现目标非线性力学响应的平台。首先表明,通过改变四边形的形状,可以调整由施加的压缩引起的内部旋转量,并实现广泛的力学响应。接下来,引入了一个神经网络,该网络在描述几何形状的参数与相应的应力-应变响应之间提供了一种计算成本低廉的关系。最后表明,通过将神经网络与进化策略相结合,可以有效地识别出导致广泛目标非线性力学响应的几何形状,并设计出优化的能量吸收系统、软体机器人和变形结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验