Park Seong Je, Heogh Woongbeom, Yang Jeongho, Kang Sukhyun, Jeong Wonjong, Lee Hoyoung, Jang Tae-Sik, Jung Hyun-Do, Jahazi Mohammad, Han Seung Chul, Kim Hyoung Seop, Lee Myoung-Gyu, Bose Susmita, Bandyopadhyay Amit, Jun Martin Byung-Guk, Kim Young Won, Fu Xingyu, Advincula Rigoberto C, Aranas Clodualdo, Kim Sang Hoon
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798 Singapore.
Satellite System 5 Team, Hanwha Systems, Yongin, Gyeonggi-do 17121 Republic of Korea.
Adv Compos Hybrid Mater. 2024;7(6):224. doi: 10.1007/s42114-024-01039-6. Epub 2024 Nov 6.
A hatching-distance-controlled lattice of 65.1Co28.2Cr5.3Mo is additively manufactured via laser powder bed fusion with a couple of periodic and aperiodic arrangements of nodes and struts. Thus, the proposed lattice has an amorphous-inspired structure in the short- and long-range orders. From the structural perspective, an artificial intelligence algorithm is used to effectively align lattices with various hatching distances. Then, the metastable lattice combination exhibits an unexpectedly high specific compression strength that is only slightly below that of a solid structure. From the microstructural perspective, the nodes in the newly designed lattice, where the thermal energy from laser irradiation is mainly concentrated, exhibit an equiaxial microstructure. By contrast, the struts exhibit a columnar microstructure, thereby allowing the thermal energy to pass through the narrow ligaments. The heterogeneous phase differences between the nodal and strut areas explain the strength-deteriorating mechanism, owing to the undesirable multi-phase development in the as-built state. However, solid-solution heat treatment to form a homogeneous phase bestows even higher specific compression strength. Furthermore, electrochemical leaching leads to the formation of nanovesicles on the surface of the microporous lattice system, thereby leading to a large surface area. A more advanced valve cage for use in a power plant is designed by using artificial intelligence both to (i) effectively preserve its mechanical stiffness and (ii) actively dissipate the generated stress through the large surface area provided by the nanovesicles.
The online version contains supplementary material available at 10.1007/s42114-024-01039-6.
通过激光粉末床熔融增材制造出一种具有65.1Co28.2Cr5.3Mo成分、受孵化距离控制的晶格,其节点和支柱有几种周期性和非周期性排列。因此,所提出的晶格在短程和长程有序结构上具有非晶态启发的结构。从结构角度来看,使用人工智能算法有效地使具有不同孵化距离的晶格对齐。然后,亚稳晶格组合表现出出乎意料的高比压缩强度,仅略低于实心结构。从微观结构角度来看,新设计晶格中的节点呈现等轴微观结构,激光辐照产生的热能主要集中在此处。相比之下,支柱呈现柱状微观结构,从而使热能能够通过狭窄的连接部分。节点和支柱区域之间的异质相差解释了强度劣化机制,这是由于增材制造状态下出现了不良的多相发展。然而,通过固溶热处理形成均匀相可赋予更高的比压缩强度。此外,电化学浸出导致在微孔晶格系统表面形成纳米囊泡,从而产生大表面积。通过使用人工智能设计了一种用于发电厂的更先进的阀笼,以(i)有效保持其机械刚度,以及(ii)通过纳米囊泡提供的大表面积主动消散产生的应力。
在线版本包含可在10.1007/s42114-024-01039-6获取的补充材料。