Suppr超能文献

利用时空卷积神经网络从 4D CT 灌注成像预测急性缺血性脑卒中的治疗特异性病灶结局。

Predicting treatment-specific lesion outcomes in acute ischemic stroke from 4D CT perfusion imaging using spatio-temporal convolutional neural networks.

机构信息

Department of Biomedical Engineering, University of Calgary, Calgary, Canada; Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.

Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.

出版信息

Med Image Anal. 2022 Nov;82:102610. doi: 10.1016/j.media.2022.102610. Epub 2022 Aug 30.

Abstract

For the diagnosis and precise treatment of acute ischemic stroke, predicting the final location and volume of lesions is of great clinical interest. Current deep learning-based prediction methods mainly use perfusion parameter maps, which can be calculated from spatio-temporal (4D) CT perfusion (CTP) imaging data, to estimate the tissue outcome of an acute ischemic stroke. However, this calculation relies on a deconvolution operation, an ill-posed problem requiring strong regularization and definition of an arterial input function. Thus, improved predictions might be achievable if the deep learning models were applied directly to acute 4D CTP data rather than perfusion maps. In this work, a novel deep spatio-temporal convolutional neural network is proposed for predicting treatment-dependent stroke lesion outcomes by making full use of raw 4D CTP data. By merging a U-Net-like architecture with temporal convolutional networks, we efficiently process the spatio-temporal information available in CTP datasets to make a tissue outcome prediction. The proposed method was evaluated on 147 patients using a 10-fold cross validation, which demonstrated that the proposed 3D+time model (mean Dice=0.45) significantly outperforms both a 2D+time variant of our approach (mean Dice=0.43) and a state-of-the-art method that uses perfusion maps (mean Dice=0.38). These results show that 4D CTP datasets include more predictive information than perfusion parameter maps, and that the proposed method is an efficient approach to make use of this complex data.

摘要

对于急性缺血性中风的诊断和精确治疗,预测病变的最终位置和体积具有重要的临床意义。目前基于深度学习的预测方法主要使用灌注参数图,这些参数图可以从时空(4D)CT 灌注(CTP)成像数据中计算出来,以估计急性缺血性中风的组织结果。然而,这种计算依赖于去卷积操作,这是一个不适定问题,需要强烈的正则化和动脉输入函数的定义。因此,如果深度学习模型直接应用于急性 4D CTP 数据而不是灌注图,可能会实现更好的预测。在这项工作中,提出了一种新的深度时空卷积神经网络,通过充分利用原始 4D CTP 数据来预测治疗相关的中风病变结果。通过将类似于 U-Net 的架构与时间卷积网络合并,我们可以有效地处理 CTP 数据集的时空信息,以进行组织结果预测。该方法在 147 名患者上进行了 10 折交叉验证评估,结果表明,所提出的 3D+时间模型(平均 Dice 值为 0.45)明显优于我们方法的 2D+时间变体(平均 Dice 值为 0.43)和使用灌注图的最新方法(平均 Dice 值为 0.38)。这些结果表明,4D CTP 数据集包含比灌注参数图更多的预测信息,并且所提出的方法是利用这种复杂数据的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验