Suppr超能文献

基于急性中风CT灌注数据的机器学习核心区和半暗带分割

Machine learning segmentation of core and penumbra from acute stroke CT perfusion data.

作者信息

Werdiger Freda, Parsons Mark W, Visser Milanka, Levi Christopher, Spratt Neil, Kleinig Tim, Lin Longting, Bivard Andrew

机构信息

Melbourne Brain Centre, Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia.

Department of Medicine, University of Melbourne, Melbourne, VIC, Australia.

出版信息

Front Neurol. 2023 Feb 23;14:1098562. doi: 10.3389/fneur.2023.1098562. eCollection 2023.

Abstract

INTRODUCTION

Computed tomography perfusion (CTP) imaging is widely used in cases of suspected acute ischemic stroke to positively identify ischemia and assess suitability for treatment through identification of reversible and irreversible tissue injury. Traditionally, this has been done setting single perfusion thresholds on two or four CTP parameter maps. We present an alternative model for the estimation of tissue fate using multiple perfusion measures simultaneously.

METHODS

We used machine learning (ML) models based on four different algorithms, combining four CTP measures (cerebral blood flow, cerebral blood volume, mean transit time and delay time) plus 3D-neighborhood (patch) analysis to predict the acute ischemic core and perfusion lesion volumes. The model was developed using 86 patient images, and then tested further on 22 images.

RESULTS

XGBoost was the highest-performing algorithm. With standard threshold-based core and penumbra measures as the reference, the model demonstrated moderate agreement in segmenting core and penumbra on test images. Dice similarity coefficients for core and penumbra were 0.38 ± 0.26 and 0.50 ± 0.21, respectively, demonstrating moderate agreement. Skull-related image artefacts contributed to lower accuracy.

DISCUSSION

Further development may enable us to move beyond the current overly simplistic core and penumbra definitions using single thresholds where a single error or artefact may lead to substantial error.

摘要

引言

计算机断层扫描灌注(CTP)成像广泛应用于疑似急性缺血性卒中的病例,通过识别可逆和不可逆组织损伤来明确缺血情况并评估治疗的适用性。传统上,这是通过在两个或四个CTP参数图上设置单一灌注阈值来完成的。我们提出了一种使用多种灌注测量同时估计组织转归的替代模型。

方法

我们使用基于四种不同算法的机器学习(ML)模型,结合四种CTP测量(脑血流量、脑血容量、平均通过时间和延迟时间)以及三维邻域(补丁)分析来预测急性缺血核心和灌注病变体积。该模型使用86例患者图像进行开发,然后在22例图像上进一步测试。

结果

XGBoost是性能最高的算法。以基于标准阈值的核心区和半暗带测量为参考,该模型在测试图像上对核心区和半暗带的分割显示出中等一致性。核心区和半暗带的骰子相似系数分别为0.38±0.26和0.50±0.21,显示出中等一致性。与颅骨相关的图像伪影导致准确性降低。

讨论

进一步的发展可能使我们超越目前使用单一阈值的过于简单的核心区和半暗带定义,在这种定义下,单个误差或伪影可能导致重大错误。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4cf/9995438/dcb8f7bd2141/fneur-14-1098562-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验