de Vries Lucas, van Herten Rudolf L M, Hoving Jan W, Išgum Ivana, Emmer Bart J, Majoie Charles B L M, Marquering Henk A, Gavves Efstratios
Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; Amsterdam Neuroscience, Amsterdam, The Netherlands.
Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
Med Image Anal. 2023 Dec;90:102971. doi: 10.1016/j.media.2023.102971. Epub 2023 Sep 15.
CT perfusion imaging is important in the imaging workup of acute ischemic stroke for evaluating affected cerebral tissue. CT perfusion analysis software produces cerebral perfusion maps from commonly noisy spatio-temporal CT perfusion data. High levels of noise can influence the results of CT perfusion analysis, necessitating software tuning. This work proposes a novel approach for CT perfusion analysis that uses physics-informed learning, an optimization framework that is robust to noise. In particular, we propose SPPINN: Spatio-temporal Perfusion Physics-Informed Neural Network and research spatio-temporal physics-informed learning. SPPINN learns implicit neural representations of contrast attenuation in CT perfusion scans using the spatio-temporal coordinates of the data and employs these representations to estimate a continuous representation of the cerebral perfusion parameters. We validate the approach on simulated data to quantify perfusion parameter estimation performance. Furthermore, we apply the method to in-house patient data and the public Ischemic Stroke Lesion Segmentation 2018 benchmark data to assess the correspondence between the perfusion maps and reference standard infarct core segmentations. Our method achieves accurate perfusion parameter estimates even with high noise levels and differentiates healthy tissue from infarcted tissue. Moreover, SPPINN perfusion maps accurately correspond with reference standard infarct core segmentations. Hence, we show that using spatio-temporal physics-informed learning for cerebral perfusion estimation is accurate, even in noisy CT perfusion data. The code for this work is available at https://github.com/lucasdevries/SPPINN.
CT灌注成像在急性缺血性卒中的影像检查中对于评估受影响的脑组织非常重要。CT灌注分析软件从通常有噪声的时空CT灌注数据中生成脑灌注图。高水平的噪声会影响CT灌注分析的结果,因此需要对软件进行调整。这项工作提出了一种用于CT灌注分析的新方法,该方法使用了物理信息学习,这是一种对噪声具有鲁棒性的优化框架。具体而言,我们提出了SPPINN:时空灌注物理信息神经网络,并研究了时空物理信息学习。SPPINN利用数据的时空坐标学习CT灌注扫描中对比剂衰减的隐式神经表示,并利用这些表示来估计脑灌注参数的连续表示。我们在模拟数据上验证了该方法,以量化灌注参数估计性能。此外,我们将该方法应用于内部患者数据和公开的2018年缺血性卒中病变分割基准数据,以评估灌注图与参考标准梗死核心分割之间的对应关系。即使在高噪声水平下,我们的方法也能实现准确的灌注参数估计,并能区分健康组织和梗死组织。此外,SPPINN灌注图与参考标准梗死核心分割准确对应。因此,我们表明,即使在有噪声的CT灌注数据中,使用时空物理信息学习进行脑灌注估计也是准确的。这项工作的代码可在https://github.com/lucasdevries/SPPINN上获取。