Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark.
Cell Rep. 2022 Sep 13;40(11):111320. doi: 10.1016/j.celrep.2022.111320.
Glymphatic fluid transport eliminates metabolic waste from the brain including amyloid-β, yet the methodology for studying efflux remains rudimentary. Here, we develop a method to evaluate glymphatic real-time clearance. Efflux of Direct Blue 53 (DB53, also T-1824 or Evans Blue) injected into the striatum is quantified by imaging the DB53 signal in the vascular compartment, where it is retained due to its high affinity to albumin. The DB53 signal is detectable as early as 15 min after injection and the efflux kinetics are sharply reduced in mice lacking the water channel aquaporin 4 (AQP4). Pharmacokinetic modeling reveal that DB53 efflux is consistent with the existence of two efflux paths, one with fast kinetics (T = 50 min) and another with slow kinetics (T = 240 min), in wild-type mice. This in vivo methodology will aid in defining the physiological variables that drive efflux, as well as the impact of brain states or disorders on clearance kinetics.
脑内的糖质淋巴转运系统可清除包括淀粉样蛋白-β在内的代谢废物,但转运系统的流出研究方法仍处于起步阶段。在这里,我们开发了一种评估糖质淋巴实时清除率的方法。通过对纹状体中注射的直接蓝 53(DB53,也称为 T-1824 或 Evans Blue)的血管腔室中的信号进行成像,可定量评估 DB53 的流出,因为 DB53 与白蛋白的高亲和力使它在血管腔室中被保留。DB53 的信号早在注射后 15 分钟即可检测到,并且在缺乏水通道蛋白 4(AQP4)的小鼠中,流出动力学急剧降低。药物代谢动力学模型表明,DB53 的流出与两种流出途径一致,在野生型小鼠中,一种途径具有快速动力学(T = 50 分钟),另一种具有缓慢动力学(T = 240 分钟)。这种体内方法将有助于确定驱动流出的生理变量,以及脑状态或疾病对清除动力学的影响。