Suppr超能文献

天然产物针对p38α丝裂原活化蛋白激酶的多阶段虚拟筛选:通过机器学习、对接研究和分子动力学模拟进行预测建模

Multi-stage virtual screening of natural products against p38α mitogen-activated protein kinase: predictive modeling by machine learning, docking study and molecular dynamics simulation.

作者信息

Yang Ruoqi, Zha Xuan, Gao Xingyi, Wang Kangmin, Cheng Bin, Yan Bin

机构信息

Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.

出版信息

Heliyon. 2022 Sep 1;8(9):e10495. doi: 10.1016/j.heliyon.2022.e10495. eCollection 2022 Sep.

Abstract

p38α is a mitogen-activated protein kinase (MAPK), and the signaling pathways involved are closely related to the inflammation, apoptosis and differentiation of cells, which also makes it an attractive target for drug discovery. With the high efficiency and low cost, virtual screening technology is becoming an indispensable part of drug development. In this study, a novel multi-stage virtual screening method based on machine learning, molecular docking and molecular dynamics simulation was developed to identify p38α MAPK inhibitors from natural products in ZINC database, which improves the prediction accuracy by considering and utilizing both ligand and receptor information compared to any individual approach. Ultimately, we screened out two candidate inhibitors with acceptable ADMET properties (ZINC4260400 and ZINC8300300). Among the generated machine learning models, Random Forest (RF) and Support Vector Machine (SVM) performed better, with the area under the receiver operating characteristic curve (AUC) values of 0.932 and 0.931 on the test set, as well as 0.834 and 0.850 on the external validation set. In addition, the results of molecular docking and ADMET prediction showed that two compounds with appropriate pharmacokinetic properties had binding free energies less than -8.0 kcal/mol for the target protein, and the results of molecular dynamics simulations further confirmed that they were stable during the process of inhibition.

摘要

p38α是一种丝裂原活化蛋白激酶(MAPK),其涉及的信号通路与细胞的炎症、凋亡和分化密切相关,这也使其成为药物研发的一个有吸引力的靶点。虚拟筛选技术凭借其高效性和低成本,正成为药物开发中不可或缺的一部分。在本研究中,开发了一种基于机器学习、分子对接和分子动力学模拟的新型多阶段虚拟筛选方法,用于从ZINC数据库中的天然产物中识别p38α MAPK抑制剂,与任何单一方法相比,该方法通过考虑和利用配体和受体信息提高了预测准确性。最终,我们筛选出了两种具有可接受的药物代谢动力学性质的候选抑制剂(ZINC4260400和ZINC8300300)。在生成的机器学习模型中,随机森林(RF)和支持向量机(SVM)表现更好,在测试集上的受试者工作特征曲线(AUC)值分别为0.932和0.931,在外部验证集上分别为0.834和0.850。此外,分子对接和药物代谢动力学预测结果表明,两种具有适当药代动力学性质的化合物与靶蛋白的结合自由能小于-8.0 kcal/mol,分子动力学模拟结果进一步证实它们在抑制过程中是稳定的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e6/9465123/970eddf48769/gr1.jpg

相似文献

2
Machine Learning Assisted Discovery of Novel p38α Inhibitors from Natural Products.
Comb Chem High Throughput Screen. 2023;26(6):1214-1223. doi: 10.2174/1386207325666220630154917.
6
Identification of potential extracellular signal-regulated protein kinase 2 inhibitors based on multiple virtual screening strategies.
Front Pharmacol. 2022 Nov 18;13:1077550. doi: 10.3389/fphar.2022.1077550. eCollection 2022.
8
Identification of novel PI3Kδ inhibitors by docking, ADMET prediction and molecular dynamics simulations.
Comput Biol Chem. 2019 Feb;78:190-204. doi: 10.1016/j.compbiolchem.2018.12.002. Epub 2018 Dec 7.

引用本文的文献

本文引用的文献

1
Multiple machine learning models combined with virtual screening and molecular docking to identify selective human ALDH1A1 inhibitors.
J Mol Graph Model. 2021 Sep;107:107950. doi: 10.1016/j.jmgm.2021.107950. Epub 2021 May 28.
2
Current status and future prospects of p38α/MAPK14 kinase and its inhibitors.
Eur J Med Chem. 2021 Mar 5;213:113216. doi: 10.1016/j.ejmech.2021.113216. Epub 2021 Jan 22.
3
The application of machine learning techniques to innovative antibacterial discovery and development.
Expert Opin Drug Discov. 2020 Oct;15(10):1165-1180. doi: 10.1080/17460441.2020.1776696. Epub 2020 Jun 17.
4
Comparison Study of Computational Prediction Tools for Drug-Target Binding Affinities.
Front Chem. 2019 Nov 20;7:782. doi: 10.3389/fchem.2019.00782. eCollection 2019.
5
Rethinking drug design in the artificial intelligence era.
Nat Rev Drug Discov. 2020 May;19(5):353-364. doi: 10.1038/s41573-019-0050-3. Epub 2019 Dec 4.
7
9
Database fingerprint (DFP): an approach to represent molecular databases.
J Cheminform. 2017 Feb 6;9:9. doi: 10.1186/s13321-017-0195-1. eCollection 2017.
10
The Stress Kinase p38α as a Target for Cancer Therapy.
Cancer Res. 2015 Oct 1;75(19):3997-4002. doi: 10.1158/0008-5472.CAN-15-0173. Epub 2015 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验