Suppr超能文献

机器学习技术在创新抗菌药物发现与开发中的应用。

The application of machine learning techniques to innovative antibacterial discovery and development.

作者信息

Serafim Mateus Sá Magalhães, Kronenberger Thales, Oliveira Patrícia Rufino, Poso Antti, Honório Káthia Maria, Mota Bruno Eduardo Fernandes, Maltarollo Vinícius Gonçalves

机构信息

Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte, Brazil.

Department of Internal Medicine VIII, University Hospital of Tübingen , Tübingen, Germany.

出版信息

Expert Opin Drug Discov. 2020 Oct;15(10):1165-1180. doi: 10.1080/17460441.2020.1776696. Epub 2020 Jun 17.

Abstract

INTRODUCTION

After the initial wave of antibiotic discovery, few novel classes of antibiotics have emerged, with the latest dating back to the 1980's. Furthermore, the pace of antibiotic drug discovery is unable to keep up with the increasing prevalence of antibiotic drug resistance. However, the increasing amount of available data promotes the use of machine learning techniques (MLT) in drug discovery projects (. construction of regression/classification models and ranking/virtual screening of compounds).

AREAS COVERED

In this review, the authors cover some of the applications of MLT in medicinal chemistry, focusing on the development of new antibiotics, the prediction of resistance and its mechanisms. The aim of this review is to illustrate the main advantages and disadvantages and the major trends from studies over the past 5 years.

EXPERT OPINION

The application of MLT to antibacterial drug discovery can aid the selection of new and potent lead compounds, with desirable pharmacokinetic and toxic profiles for further optimization. The increasing volume of available data along with the constant improvement in computational power and algorithms has meant that we are experiencing a transition in the way we face modern issues such as drug resistance, where our decisions are data-driven and experiments can be focused by data-suggested hypotheses.

摘要

引言

在抗生素发现的首轮浪潮之后,几乎没有新的抗生素类别出现,最新的一批可追溯到20世纪80年代。此外,抗生素药物发现的速度无法跟上抗生素耐药性日益增加的流行率。然而,可用数据量的增加促进了机器学习技术(MLT)在药物发现项目中的应用(例如构建回归/分类模型以及对化合物进行排名/虚拟筛选)。

涵盖领域

在本综述中,作者介绍了MLT在药物化学中的一些应用,重点是新型抗生素的开发、耐药性及其机制的预测。本综述的目的是阐述过去5年研究中的主要优缺点和主要趋势。

专家观点

将MLT应用于抗菌药物发现有助于选择新的、有效的先导化合物,这些化合物具有理想的药代动力学和毒性特征,以便进一步优化。可用数据量的不断增加以及计算能力和算法的持续改进意味着我们正在经历一种转变,即面对诸如耐药性等现代问题的方式发生转变,在这种转变中,我们的决策以数据为驱动,实验可以由数据提出的假设来聚焦。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验