Suppr超能文献

基于多种虚拟筛选策略鉴定潜在的细胞外信号调节蛋白激酶2抑制剂

Identification of potential extracellular signal-regulated protein kinase 2 inhibitors based on multiple virtual screening strategies.

作者信息

Yang Ruoqi, Zhao Guiping, Zhang Lili, Xia Yu, Yu Huijuan, Yan Bin, Cheng Bin

机构信息

Department of Acupuncture, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.

School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.

出版信息

Front Pharmacol. 2022 Nov 18;13:1077550. doi: 10.3389/fphar.2022.1077550. eCollection 2022.

Abstract

The integration of multiple virtual screening strategies facilitates the balance of computational efficiency and prediction accuracy. In this study, we constructed an efficient and reliable "multi-stage virtual screening-in vitro biological validation" system to identify potential inhibitors targeting extracellular signal-regulated protein kinase 2 (ERK2). Firstly, we rapidly obtained 10 candidate ERK2 inhibitors with desirable pharmacokinetic characteristics from thousands of named natural products in ZINC database based on machine learning classification models and ADME/T prediction. The structure-based molecular docking approach was then used to obtain four further hits with lower binding free energy compared to the positive control molecule Magnolipin. Subsequently, the two compounds were purchased for biological validation considering commercial availability and economic cost, and the results showed that Dodoviscin A exhibited acceptable inhibitory activity on ERK2 (IC = 10.79 μm). Finally, the mechanism of action and binding stability of this natural product inhibitor were investigated by binding mode analysis and molecular dynamics simulation.

摘要

多种虚拟筛选策略的整合有助于平衡计算效率和预测准确性。在本研究中,我们构建了一个高效且可靠的“多阶段虚拟筛选-体外生物学验证”系统,以鉴定靶向细胞外信号调节蛋白激酶2(ERK2)的潜在抑制剂。首先,基于机器学习分类模型和ADME/T预测,我们从ZINC数据库中数千种命名天然产物中快速获得了10种具有理想药代动力学特征的ERK2候选抑制剂。然后,使用基于结构的分子对接方法,与阳性对照分子Magnolipin相比,获得了另外4个具有更低结合自由能的命中化合物。随后,考虑到商业可得性和经济成本,购买了这两种化合物进行生物学验证,结果表明Dodoviscin A对ERK2表现出可接受的抑制活性(IC = 10.79μm)。最后,通过结合模式分析和分子动力学模拟研究了这种天然产物抑制剂的作用机制和结合稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe65/9715613/afb507918443/fphar-13-1077550-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验