Suppr超能文献

高能不利的蛋白质角:磷酸丙糖异构酶中保守的二面角探讨。

Energetically unfavorable protein angles: Exploration of a conserved dihedral angle in triosephosphate isomerase.

机构信息

Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, USA.

出版信息

Biopolymers. 2022 Nov;113(11):e23525. doi: 10.1002/bip.23525. Epub 2022 Sep 15.

Abstract

Over the past 3.5 billion years of evolution, enzymes have adopted a myriad of conformations to suit life on earth. However, torsional angles of proteins have settled into limited zones of energetically favorable dihedrals observed in Ramachandran plots. Areas outside said zones are believed to be disallowed to all amino acids, except glycine, due to steric hindrance. Triosephosphate isomerase (TIM), a homodimer with a catalytic rate approaching the diffusion limit, contains an active site lysine residue (K13) with dihedrals within the fourth quadrant (Φ = +51/Ψ = -143). Both the amino acid and the dihedral angles are conserved across all species of TIM and known crystal structures regardless of ligand. Only crystal structures of the engineered monomeric version (1MSS) show accepted β-sheet dihedral values of Φ = -135/Ψ = +170 but experiments show a 1000-fold loss in activity. Based on these results, we hypothesized that adopting the unfavorable torsion angle for K13 contributes to catalysis. Using both, computational and experimental approaches, four residues that interact with K13 (N11, M14, E97, and Q64) were mutated to alanine. In silico molecular dynamics (MD) simulations were performed using 2JK2 unliganded human TIM as a starting structure. Ramachandran plots, containing K13 dihedral values reveal full or partial loss of disallowed zone angles. N11A showed no detectable catalytic activity and lost the unfavorable K13 dihedral angles across four separate force fields during simulation while all other mutants plus wild type retained activity and retained the conserved K13 dihedral angles.

摘要

在过去的 35 亿年进化过程中,酶已经采用了无数的构象来适应地球上的生命。然而,蛋白质的扭转角已经稳定在拉马钱德兰图中观察到的能量有利的二面角的有限区域内。由于空间位阻,除甘氨酸外,人们认为所有氨基酸都不能进入所述区域之外。磷酸丙糖异构酶(TIM)是一种具有接近扩散限制的催化速率的同源二聚体,含有一个位于第四象限(Φ=+51/Ψ=-143)的活性位点赖氨酸残基(K13)。无论是配体如何,所有 TIM 物种和已知晶体结构都保守氨基酸和二面角。只有工程单体版本(1MSS)的晶体结构显示出可接受的β-折叠二面角值Φ=-135/Ψ=+170,但实验表明活性降低了 1000 倍。基于这些结果,我们假设采用不利于 K13 的扭转角有助于催化。我们使用计算和实验方法,将与 K13 相互作用的四个残基(N11、M14、E97 和 Q64)突变为丙氨酸。使用 2JK2 未配体的人 TIM 作为起始结构进行了计算机分子动力学(MD)模拟。包含 K13 二面角的拉马钱德兰图揭示了完全或部分失去了禁止区域的角度。N11A 没有检测到催化活性,并且在模拟过程中失去了四个不同力场中的不利的 K13 二面角,而所有其他突变体加野生型保留了活性并保留了保守的 K13 二面角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验