Wu Xinying, Wang Yongliang, Ni Qiaohan, Li Haizhen, Wu Xuesong, Yuan Zhanxin, Xiao Renhao, Ren Ziyin, Lu Jingjing, Yun Jinxia, Wang Zhijuan, Li Xia
National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
Guangdong Laboratory for Lingnan Modern Agriculture, Wushan Road, Guangzhou, 510642, China.
J Integr Plant Biol. 2023 Jan;65(1):167-187. doi: 10.1111/jipb.13364. Epub 2022 Dec 31.
Iron (Fe) is essential for DNA synthesis, photosynthesis and respiration of plants. The demand for Fe substantially increases during legumes-rhizobia symbiotic nitrogen fixation because of the synthesis of leghemoglobin in the host and Fe-containing proteins in bacteroids. However, the mechanism by which plant controls iron transport to nodules remains largely unknown. Here we demonstrate that GmYSL7 serves as a key regulator controlling Fe uptake from root to nodule and distribution in soybean nodules. GmYSL7 is Fe responsive and GmYSL7 transports iron across the membrane and into the infected cells of nodules. Alterations of GmYSL7 substantially affect iron distribution between root and nodule, resulting in defective growth of nodules and reduced nitrogenase activity. GmYSL7 knockout increases the expression of GmbHLH300, a transcription factor required for Fe response of nodules. Overexpression of GmbHLH300 decreases nodule number, nitrogenase activity and Fe content in nodules. Remarkably, GmbHLH300 directly binds to the promoters of ENOD93 and GmLbs, which regulate nodule number and nitrogenase activity, and represses their transcription. Our data reveal a new role of GmYSL7 in controlling Fe transport from host root to nodule and Fe distribution in nodule cells, and uncover a molecular mechanism by which Fe affects nodule number and nitrogenase activity.
铁(Fe)对于植物的DNA合成、光合作用和呼吸作用至关重要。在豆科植物-根瘤菌共生固氮过程中,由于宿主中豆血红蛋白和类菌体中含铁蛋白的合成,对铁的需求大幅增加。然而,植物控制铁向根瘤运输的机制在很大程度上仍不清楚。在这里,我们证明GmYSL7作为一个关键调节因子,控制铁从根到根瘤的吸收以及在大豆根瘤中的分布。GmYSL7对铁有响应,并且GmYSL7能将铁跨膜运输到根瘤的受感染细胞中。GmYSL7的改变会显著影响根和根瘤之间的铁分布,导致根瘤生长缺陷和固氮酶活性降低。GmYSL7基因敲除会增加GmbHLH300的表达,GmbHLH300是根瘤铁响应所需的转录因子。GmbHLH300的过表达会减少根瘤数量、固氮酶活性和根瘤中的铁含量。值得注意的是,GmbHLH300直接结合到调控根瘤数量和固氮酶活性的ENOD93和GmLbs的启动子上,并抑制它们的转录。我们的数据揭示了GmYSL7在控制铁从宿主根向根瘤运输以及根瘤细胞中铁分布方面的新作用,并揭示了铁影响根瘤数量和固氮酶活性的分子机制。