Suppr超能文献

一种铁激活的柠檬酸转运蛋白 MtMATE67,是共生固氮所必需的。

An Iron-Activated Citrate Transporter, MtMATE67, Is Required for Symbiotic Nitrogen Fixation.

机构信息

Noble Research Institute, Ardmore, Oklahoma 73401.

Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996.

出版信息

Plant Physiol. 2018 Mar;176(3):2315-2329. doi: 10.1104/pp.17.01538. Epub 2017 Dec 28.

Abstract

Iron (Fe) is an essential micronutrient for symbiotic nitrogen fixation in legume nodules, where it is required for the activity of bacterial nitrogenase, plant leghemoglobin, respiratory oxidases, and other Fe proteins in both organisms. Fe solubility and transport within and between plant tissues is facilitated by organic chelators, such as nicotianamine and citrate. We have characterized a nodule-specific citrate transporter of the multidrug and toxic compound extrusion family, MtMATE67 of The MtMATE67 gene was induced early during nodule development and expressed primarily in the invasion zone of mature nodules. The MtMATE67 protein was localized to the plasma membrane of nodule cells and also the symbiosome membrane surrounding bacteroids in infected cells. In oocytes, MtMATE67 transported citrate out of cells in an Fe-activated manner. Loss of gene function resulted in accumulation of Fe in the apoplasm of nodule cells and a substantial decrease in symbiotic nitrogen fixation and plant growth. Taken together, the results point to a primary role of MtMATE67 in citrate efflux from nodule cells in response to an Fe signal. This efflux is necessary to ensure Fe(III) solubility and mobility in the apoplasm and uptake into nodule cells. Likewise, MtMATE67-mediated citrate transport into the symbiosome space would increase the solubility and availability of Fe(III) for rhizobial bacteroids.

摘要

铁(Fe)是共生固氮作用所必需的微量元素,在豆科植物的根瘤中,它是细菌固氮酶、植物豆血红蛋白、呼吸氧化酶和两种生物中其他 Fe 蛋白活性所必需的。有机螯合剂(如尼克酰胺和柠檬酸)促进了 Fe 在植物组织内和组织间的溶解度和运输。我们已经鉴定出一种多药和毒性化合物外排家族的根瘤特异性柠檬酸转运蛋白,即 MtMATE67。MtMATE67 基因在根瘤发育早期被诱导,并主要在成熟根瘤的侵染区表达。MtMATE67 蛋白定位于根瘤细胞的质膜,也定位于感染细胞中类菌体周围的共生体膜。在卵母细胞中,MtMATE67 以 Fe 激活的方式将柠檬酸从细胞内转运出去。基因功能丧失导致根瘤细胞质外体中 Fe 的积累,共生固氮和植物生长显著减少。总之,这些结果表明 MtMATE67 在根瘤细胞对 Fe 信号的柠檬酸外排中起主要作用。这种外排对于确保质外体中 Fe(III)的溶解度和流动性以及进入根瘤细胞的摄取是必要的。同样,MtMATE67 介导的柠檬酸向共生体空间的运输将增加根瘤细菌固氮菌中 Fe(III)的溶解度和可用性。

相似文献

1
An Iron-Activated Citrate Transporter, MtMATE67, Is Required for Symbiotic Nitrogen Fixation.
Plant Physiol. 2018 Mar;176(3):2315-2329. doi: 10.1104/pp.17.01538. Epub 2017 Dec 28.
2
Medicago truncatula Ferroportin2 mediates iron import into nodule symbiosomes.
New Phytol. 2020 Oct;228(1):194-209. doi: 10.1111/nph.16642. Epub 2020 May 31.
4
Medicago truncatula Yellow Stripe-Like7 encodes a peptide transporter participating in symbiotic nitrogen fixation.
Plant Cell Environ. 2021 Jun;44(6):1908-1920. doi: 10.1111/pce.14059. Epub 2021 Apr 13.
5
Medicago truncatula esn1 defines a genetic locus involved in nodule senescence and symbiotic nitrogen fixation.
Mol Plant Microbe Interact. 2013 Aug;26(8):893-902. doi: 10.1094/MPMI-02-13-0043-R.
6
Transcription of ENOD8 in Medicago truncatula nodules directs ENOD8 esterase to developing and mature symbiosomes.
Mol Plant Microbe Interact. 2008 Apr;21(4):404-10. doi: 10.1094/MPMI-21-4-0404.
7
Iron: an essential micronutrient for the legume-rhizobium symbiosis.
Front Plant Sci. 2013 Sep 13;4:359. doi: 10.3389/fpls.2013.00359.
8
The Nodule-Specific PLAT Domain Protein NPD1 Is Required for Nitrogen-Fixing Symbiosis.
Plant Physiol. 2019 Jul;180(3):1480-1497. doi: 10.1104/pp.18.01613. Epub 2019 May 6.
9
Medicago truncatula copper transporter 1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation.
New Phytol. 2018 Apr;218(2):696-709. doi: 10.1111/nph.14992. Epub 2018 Jan 19.
10
GmYSL7 controls iron uptake, allocation, and cellular response of nodules in soybean.
J Integr Plant Biol. 2023 Jan;65(1):167-187. doi: 10.1111/jipb.13364. Epub 2022 Dec 31.

引用本文的文献

1
Nutrient-dependent regulation of symbiotic nitrogen fixation in legumes.
Hortic Res. 2024 Nov 26;12(3):uhae321. doi: 10.1093/hr/uhae321. eCollection 2025 Mar.
2
Understanding the Crucial Role of Phosphate and Iron Availability in Regulating Root Nodule Symbiosis.
Plant Cell Physiol. 2024 Dec 21;65(12):1925-1936. doi: 10.1093/pcp/pcae128.
3
The Role of Low-Molecular-Weight Organic Acids in Metal Homeostasis in Plants.
Int J Mol Sci. 2024 Sep 2;25(17):9542. doi: 10.3390/ijms25179542.
4
Editorial: Plant-rhizobia symbiosis and nitrogen fixation in legumes.
Front Plant Sci. 2024 Mar 11;15:1392006. doi: 10.3389/fpls.2024.1392006. eCollection 2024.
5
Biofortification of common bean ( L.) with iron and zinc: Achievements and challenges.
Food Energy Secur. 2022 Jun 30;12(2):e406. doi: 10.1002/fes3.406. eCollection 2023 Mar.
6
Metal nutrition and transport in the process of symbiotic nitrogen fixation.
Plant Commun. 2024 Apr 8;5(4):100829. doi: 10.1016/j.xplc.2024.100829. Epub 2024 Feb 1.
8
Iron in the Symbiosis of Plants and Microorganisms.
Plants (Basel). 2023 May 11;12(10):1958. doi: 10.3390/plants12101958.
9
genes have distinct roles in phosphorus homeostasis and symbiotic nitrogen fixation.
Front Plant Sci. 2023 Jun 13;14:1211107. doi: 10.3389/fpls.2023.1211107. eCollection 2023.
10
Rapid Changes to Endomembrane System of Infected Root Nodule Cells to Adapt to Unusual Lifestyle.
Int J Mol Sci. 2023 Feb 28;24(5):4647. doi: 10.3390/ijms24054647.

本文引用的文献

1
Rapid analysis of legume root nodule development using confocal microscopy.
New Phytol. 2004 Sep;163(3):661-668. doi: 10.1111/j.1469-8137.2004.01138.x.
3
MtSWEET11, a Nodule-Specific Sucrose Transporter of Medicago truncatula.
Plant Physiol. 2016 May;171(1):554-65. doi: 10.1104/pp.15.01910. Epub 2016 Mar 28.
4
MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.
Mol Biol Evol. 2016 Jul;33(7):1870-4. doi: 10.1093/molbev/msw054. Epub 2016 Mar 22.
5
Structures of multidrug and toxic compound extrusion transporters and their mechanistic implications.
Channels (Austin). 2016;10(2):88-100. doi: 10.1080/19336950.2015.1106654. Epub 2015 Oct 21.
7
Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance.
Annu Rev Plant Biol. 2015;66:571-98. doi: 10.1146/annurev-arplant-043014-114822. Epub 2015 Jan 22.
8
Extreme specificity of NCR gene expression in Medicago truncatula.
BMC Genomics. 2014 Aug 25;15(1):712. doi: 10.1186/1471-2164-15-712.
10
Keel petal incision: a simple and efficient method for genetic crossing in Medicago truncatula.
Plant Methods. 2014 May 16;10:11. doi: 10.1186/1746-4811-10-11. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验