Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
Angew Chem Int Ed Engl. 2022 Nov 7;61(45):e202210121. doi: 10.1002/anie.202210121. Epub 2022 Oct 7.
Integrating artificial enzymes onto nanostructures target- and site-specifically is still a challenge. Here we show that target miRNAs trigger the formation of DNAzyme site-specifically at the tip of filamentous phage for detecting miRNA biomarkers. Through an antibody-modified oligonucleotide, the tip of the phage with magnetic nanoparticles on the sidewall captures a target miRNA, inducing the formation of DNAzyme that extends from the phage tip through a hybridization chain reaction. After magnetic separation, the resultant complex catalyzes a colorimetric reaction with the signal correlated to target concentrations, leading to the quantification of miRNAs with a detection limit of 5.0 fM, about 10 folds lower than the phage-free approach. Our approach can differentiate miRNA mutants and quantify miRNA in human plasma, tumor cells, and tissues with high sensitivity, suggesting that the target-triggered integration of enzymes and phages holds promise for searching for new catalysts.
将人工酶整合到纳米结构上进行靶向和定点仍然是一个挑战。在这里,我们展示了目标 miRNA 可以在丝状噬菌体的尖端触发 DNA 酶的定点形成,用于检测 miRNA 生物标志物。通过抗体修饰的寡核苷酸,带有侧链磁性纳米颗粒的噬菌体尖端捕获目标 miRNA,诱导从噬菌体尖端延伸的 DNA 酶的形成,通过杂交链式反应。磁分离后,所得复合物催化比色反应,信号与目标浓度相关,从而实现 miRNA 的定量检测,检测限低至 5.0 fM,比无噬菌体方法低约 10 倍。我们的方法可以区分 miRNA 突变体,并在人血浆、肿瘤细胞和组织中进行高灵敏度定量,表明酶和噬菌体的目标触发整合具有寻找新型催化剂的潜力。