Qilu University of Technology (Shandong Academy of Sciences), Advanced Materials Institute, Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Jinan 250014, PR China.
Beijing Key Laboratory of Materials Utilization of Non-metallic Minerals and Solid Waste, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
J Colloid Interface Sci. 2023 Jan;629(Pt A):813-821. doi: 10.1016/j.jcis.2022.08.143. Epub 2022 Aug 27.
Flexible fiber-shaped supercapacitors (FSSCs) are promising candidates as electrode materials for the development of deformable electronic devices. Although tremendous efforts have been focused on the preparation of flexible electrode materials, traditional FSSCs materials face problems of inferior stability and complicated processes. Boron-doped diamond (BDD) holds promise as a FSSC electrode, owing to its well-established preparation process, strong acid and alkali corrosion resistance, environmentally and skin-friendly characteristics. Here, we reported a novel strategy for the construction of BDD-based FSSCs by growing a BDD film on a flexible tantalum (Ta) fiber substrate through hot filament chemical vapor deposition technique. Results showed that the BDD fiber film featured 10 folds improvement in specific capacitance than a planar BDD electrode. A symmetric supercapacitor device was assembled using the BDD fiber electrode and achieved an energy density of 25.6 mJ cm at a power density of 0.6 mW cm, and a desirable stability with higher capacitance retention of 93.5% after 20,000 cycles. Furthermore, the symmetric BDD fiber device exhibited satisfactory bendability with high specific capacitance retention under various bending deformations. The findings in this research work hold promise for the fabrication of high performance flexible FSSCs.
柔性纤维状超级电容器 (FSSC) 作为可变形电子设备的电极材料具有广阔的应用前景。尽管已经在制备柔性电极材料方面付出了巨大的努力,但传统的 FSSC 材料仍存在稳定性差和工艺复杂等问题。掺硼金刚石 (BDD) 作为 FSSC 电极具有良好的应用前景,因为其制备工艺成熟、耐强酸强碱腐蚀、环境友好和对皮肤友好。在这里,我们通过热丝化学气相沉积技术在柔性钽 (Ta) 纤维基底上生长 BDD 薄膜,提出了一种构建基于 BDD 的 FSSC 的新策略。结果表明,BDD 纤维薄膜的比电容比平面 BDD 电极提高了 10 倍。使用 BDD 纤维电极组装了对称超级电容器器件,在功率密度为 0.6 mW cm 时,能量密度达到 25.6 mJ cm,在 20000 次循环后具有较高的电容保持率 93.5%,表现出良好的稳定性。此外,该对称 BDD 纤维器件在各种弯曲变形下表现出良好的弯曲性和较高的比电容保持率。这项研究工作为制备高性能柔性 FSSC 提供了新的思路。