Suppr超能文献

用于电化学传感目的的喷墨打印制造的硼掺杂金刚石芯片电极。

Inkjet Printing-Manufactured Boron-Doped Diamond Chip Electrodes for Electrochemical Sensing Purposes.

作者信息

Liu Zhichao, Baluchová Simona, Brocken Bob, Ahmed Essraa, Pobedinskas Paulius, Haenen Ken, Buijnsters Josephus G

机构信息

Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium.

出版信息

ACS Appl Mater Interfaces. 2023 Aug 23;15(33):39915-39925. doi: 10.1021/acsami.3c04824. Epub 2023 Aug 9.

Abstract

Fabrication of patterned boron-doped diamond (BDD) in an inexpensive and straightforward way is required for a variety of practical applications, including the development of BDD-based electrochemical sensors. This work describes a simplified and novel bottom-up fabrication approach for BDD-based three-electrode sensor chips utilizing direct inkjet printing of diamond nanoparticles on silicon-based substrates. The whole seeding process, accomplished by a commercial research inkjet printer with piezo-driven drop-on-demand printheads, was systematically examined. Optimized and continuous inkjet-printed features were obtained with glycerol-based diamond ink (0.4% vol/wt), silicon substrates pretreated by exposure to oxygen plasma and subsequently to air, and applying a dot density of 750 drops (volume 9 pL) per inch. Next, the dried micropatterned substrate was subjected to a chemical vapor deposition step to grow uniform thin-film BDD, which satisfied the function of both working and counter electrodes. Silver was inkjet-printed to complete the sensor chip with a reference electrode. Scanning electron micrographs showed a closed BDD layer with a typical polycrystalline structure and sharp and well-defined edges. Very good homogeneity in diamond layer composition and a high boron content (∼2 × 10 atoms cm) was confirmed by Raman spectroscopy. Important electrochemical characteristics, including the width of the potential window (2.5 V) and double-layer capacitance (27 μF cm), were evaluated by cyclic voltammetry. Fast electron transfer kinetics was recognized for the [Ru(NH)] redox marker due to the high doping level, while somewhat hindered kinetics was observed for the surface-sensitive [Fe(CN)] probe. Furthermore, the ability to electrochemically detect organic compounds of different structural motifs, such as glucose, ascorbic acid, uric acid, tyrosine, and dopamine, was successfully verified and compared with commercially available screen-printed BDD electrodes. The newly developed chip-based manufacture method enables the rapid prototyping of different small-scale electrode designs and BDD microstructures, which can lead to enhanced sensor performance with capability of repeated use.

摘要

以低成本、直接的方式制造图案化硼掺杂金刚石(BDD)对于包括基于BDD的电化学传感器开发在内的各种实际应用而言是必需的。本文介绍了一种简化且新颖的自下而上的制造方法,用于制造基于BDD的三电极传感器芯片,该方法利用在硅基衬底上直接喷墨打印金刚石纳米颗粒。通过使用具有压电驱动按需喷墨打印头的商用研究型喷墨打印机完成的整个种子层沉积过程得到了系统研究。使用基于甘油的金刚石墨水(0.4%体积/重量)、经氧等离子体处理并随后暴露于空气中的硅衬底,并施加每英寸750滴(体积9皮升)的点密度,获得了优化且连续的喷墨打印图案。接下来,对干燥后的微图案化衬底进行化学气相沉积步骤,以生长均匀的薄膜BDD,该BDD同时满足工作电极和对电极的功能。通过喷墨打印银来完成带有参比电极的传感器芯片。扫描电子显微镜图像显示出具有典型多晶结构且边缘清晰明确的封闭BDD层。拉曼光谱证实了金刚石层成分具有非常好的均匀性以及高硼含量(约2×10原子/立方厘米)。通过循环伏安法评估了重要的电化学特性,包括电位窗口宽度(2.5伏)和双层电容(27微法/平方厘米)。由于高掺杂水平,对于[Ru(NH₃)₆]³⁺/²⁺氧化还原标记物观察到快速的电子转移动力学,而对于表面敏感的[Fe(CN)₆]³⁻/⁴⁻探针则观察到有些受阻的动力学。此外,成功验证了电化学检测不同结构基序的有机化合物(如葡萄糖、抗坏血酸、尿酸、酪氨酸和多巴胺)的能力,并与市售的丝网印刷BDD电极进行了比较。新开发的基于芯片的制造方法能够对不同的小规模电极设计和BDD微结构进行快速原型制作,这可导致具有重复使用能力的增强型传感器性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f9/10450640/f88db2ba36ad/am3c04824_0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验