Suppr超能文献

开发一个基于 REDCap 的工作流程,使用开源软件对医学部门实时数据进行大容量关系数据分析。

Development of a REDCap-based workflow for high-volume relational data analysis on real-time data in a medical department using open source software.

机构信息

Department of Medical Sciences, Nuclear Medicine, AOU Città della Salute e della Scienza di Torino, University of Turin, Corso Bramante 88, Turin 10126, Italy.

Department of Medical Sciences, Computational Biomedicine, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy.

出版信息

Comput Methods Programs Biomed. 2022 Nov;226:107111. doi: 10.1016/j.cmpb.2022.107111. Epub 2022 Sep 6.

Abstract

BACKGROUND/AIM: The current availability of large volumes of clinical data has provided medical departments with the opportunity for large-scale analyses, but it has also brought forth the need for an effective strategy of data-storage and data-analysis that is both technically feasible and economically sustainable in the context of limited resources and manpower. Therefore, the aim of this study was to develop a widely-usable data-collection and data-analysis workflow that could be applied in medical departments to perform high-volume relational data analysis on real-time data.

METHODS

A sample project, based on a research database on prostate-specific-membrane-antigen/positron-emission-tomography scans performed in prostate cancer patients at our department, was used to develop a new workflow for data-collection and data-analysis. A checklist of requirements for a successful data-collection/analysis strategy, based on shared clinical research experience, was used as reference standard. Software libraries were selected based on widespread availability, reliability, cost, and technical expertise of the research team (REDCap-v11.0.0 for collaborative data-collection, Python-v3.8.5 for data retrieval and SQLite-v3.31.1 for data storage). The primary objective of this study was to develop and implement a workflow to: a) easily store large volumes of structured data into a relational database, b) perform scripted analyses on relational data retrieved in real-time from the database. The secondary objective was to enhance the strategy cost-effectiveness by using open-source/cost-free software libraries.

RESULTS

A fully working data strategy was developed and successfully applied to a sample research project. The REDCap platform provided a remote and secure method to collaboratively collect large volumes of standardized relational data, with low technical difficulty and role-based access-control. A Python software was coded to retrieve live data through the REDCap-API and persist them to an SQLite database, preserving data-relationships. The SQL-language enabled complex datasets retrieval, while Python allowed for scripted data computation and analysis. Only cost-free software libraries were used and the sample code was made available through a GitHub repository.

CONCLUSIONS

A REDCap-based data-collection and data-analysis workflow, suitable for high-volume relational data-analysis on live data, was developed and successfully implemented using open-source software.

摘要

背景/目的:大量临床数据的当前可用性为医学部门提供了进行大规模分析的机会,但也需要一种有效的数据存储和数据分析策略,该策略在资源和人力有限的情况下在技术上可行且在经济上可持续。因此,本研究的目的是开发一种广泛适用的数据收集和数据分析工作流程,可应用于医学部门对实时数据进行大容量关系数据分析。

方法

基于我们部门进行的前列腺特异性膜抗原/正电子发射断层扫描研究数据库的示例项目,开发了一种新的数据收集和数据分析工作流程。使用基于共享临床研究经验的成功数据收集/分析策略需求检查表作为参考标准。根据广泛可用性、可靠性、成本和研究团队的技术专业知识选择软件库(用于协作数据收集的 REDCap-v11.0.0、用于数据检索的 Python-v3.8.5 和用于数据存储的 SQLite-v3.31.1)。本研究的主要目的是开发和实施一种工作流程,以:a)轻松将大量结构化数据存储到关系数据库中,b)实时从数据库中检索关系数据并执行脚本分析。次要目标是通过使用开源/免费软件库提高策略的成本效益。

结果

开发了一个完全有效的数据策略,并成功应用于一个示例研究项目。REDCap 平台提供了一种远程且安全的方法,可以协作式地收集大量标准化的关系数据,技术难度低且具有基于角色的访问控制。编写了一个 Python 软件来通过 REDCap-API 检索实时数据,并将其保存到 SQLite 数据库中,保留数据关系。SQL 语言允许检索复杂的数据集,而 Python 允许对脚本数据进行计算和分析。仅使用免费软件库,示例代码可通过 GitHub 存储库获得。

结论

使用开源软件开发并成功实施了基于 REDCap 的数据收集和数据分析工作流程,适用于实时大容量关系数据分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验