Frutiger S, Hughes G J, Hanly W C, Kingzette M, Jaton J C
J Biol Chem. 1987 Aug 5;262(22):10463-9.
We have previously shown (Frutiger, S., Hughes, G. J., Hanly, W. C., Kingzette, M., and Jaton, J.-C. (1986) J. Biol. Chem. 261, 16673-16681) that limited tryptic digestion of the high Mr form of rabbit secretory component of allotypes t61, t62, and t63 generates two major fragments, the NH2-terminal domain and a 40-kDa fragment encompassing domains 3, 4, and 5. Similarly, from the low Mr form of secretory component, (SC) the NH2-terminal domain, together with a 30-kDa fragment containing domains 4 and 5, were released. These fragments were used as inhibitors in a sensitive competitive binding radioimmunoassay with noncross-reactive rabbit alloantisera to study the distribution and localization of the major allotype-specific allotopes within the SC polypeptide. The 40-kDa fragments were shown to inhibit the 125I-labeled intact SC/anti-SC allotype reaction to the extent of 90%, i.e. nearly as well as the intact homologous high Mr SC form. In contrast, the NH2-terminal fragments (domain 1) were not inhibitory. The low Mr SC of each allotype was less inhibitory on a molar basis than the homologous high Mr SC polypeptide, an observation compatible with the deletion of domains 2 and 3 in the smaller polypeptide (Deitcher, D. L., and Mostov, K. E. (1986) Mol. Cell. Biol. 6, 2712-2715; Frutiger, S., Hughes, G. J., Fonck, Ch., and Jaton, J.-C. (1987) J. Biol. Chem. 262, 1712-1715). The structural correlates of the allotypic specificities were evaluated by comparative peptide mapping of the 40-kDa fragments (allotypes t61, t62, and t63). The data suggest that the t61 allotype structure differs significantly from the t62 and t63 structures, the latter two being much more related to each other than to t61. These findings are in full agreement with the serological data. The inhibition results suggest that the major allotype-specific, noncross-reactive allotopes of SC are distributed throughout domains 3, 4, and 5, even though domain 4 appears to be more conserved than domains 3 and 5 between the allotypes t61 and t63. Seven amino acid substitutions between t61 and t63 have been detected within domains 3, 4, and 5.