Pusty Manojit, Shirage Parasharam M
Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India.
Langmuir. 2022 Sep 27;38(38):11787-11800. doi: 10.1021/acs.langmuir.2c01995. Epub 2022 Sep 16.
WO nanostructures, previously used for electrocatalysis, energy storage, electrochromic, and gas sensing applications, are incorporated in poly(vinylidene fluoride) (PVDF) in this work for mechanical energy-harvesting applications. X-ray diffraction spectroscopy (XRD), high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, differential scanning calorimetry (DSC), and the polarization-electric (P-E) field loop test prompts the addition of WO nanorods in PVDF nucleates and stabilizes the piezoelectric polar γ-phase in the nanocomposite. Electrochemical experiments were employed for the first time to relate the event of the evolution of crystalline phases in PVDF to the transfer of electrons to the electrolyte from PVDF using the data from cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). High dielectric constant (ε') and low dielectric loss (ε″) values were obtained proportionately for different weight percentage additions of WO nanorods in PVDF. DSC was employed to study the crystallization kinetics of γ-phase evolution. Piezoresponse force microscopy (PFM) was used to compare the piezoelectric responses from the PVDF nanocomposites. The WO/PVDF nanocomposite could generate a peak open circuit voltage of ∼6 V and a peak short circuit current of ∼700 nA. The WO/PVDF nanocomposite could light two commercial blue-light-emitting diodes (LEDs) with hand impulse imparting.
此前用于电催化、能量存储、电致变色和气体传感应用的WO纳米结构,在本工作中被纳入聚偏二氟乙烯(PVDF)中,用于机械能收集应用。X射线衍射光谱(XRD)、高分辨率透射电子显微镜(HR-TEM)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)、拉曼光谱、差示扫描量热法(DSC)以及极化-电场(P-E)回线测试表明,在PVDF中添加WO纳米棒可使纳米复合材料中的压电极性γ相形核并稳定。首次采用电化学实验,利用循环伏安法(CV)和电化学阻抗谱(EIS)的数据,将PVDF中晶相演变的过程与电子从PVDF转移到电解质的过程联系起来。对于在PVDF中添加不同重量百分比的WO纳米棒,相应地获得了高介电常数(ε')和低介电损耗(ε″)值。采用DSC研究γ相演变的结晶动力学。利用压电力显微镜(PFM)比较PVDF纳米复合材料的压电响应。WO/PVDF纳米复合材料可产生约6 V的峰值开路电压和约700 nA的峰值短路电流。通过手动施加脉冲,WO/PVDF纳米复合材料可点亮两个商用蓝色发光二极管(LED)。