Suppr超能文献

条码应用的持续发展:从功能毒理学到细胞谱系。

The continuing evolution of barcode applications: Functional toxicology to cell lineage.

机构信息

College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA.

出版信息

Exp Biol Med (Maywood). 2022 Dec;247(23):2119-2127. doi: 10.1177/15353702221121600. Epub 2022 Sep 16.

Abstract

DNA barcoding is a method to identify biological entities, including individual cells, tissues, organs, or species, by unique DNA sequences. With the advent of next generation sequencing (NGS), there has been an exponential increase in data acquisition pertaining to medical diagnosis, genetics, toxicology, ecology, cancer, and developmental biology. While barcoding first gained wide access in identifying species, signature tagged mutagenesis has been useful in elucidating gene function, particularly in microbes. With the advent of CRISPR/CAS9, methodology to profile eukaryotic genes has made a broad impact in toxicology and cancer biology. Designed homing guide RNAs (hgRNAs) that self-target DNA sequences facilitate cell lineage barcoding by introducing stochastic mutations within cell identifiers. While each of these applications has their limitations, the potential of sequence barcoding has yet to be realized. This review will focus on signature-tagged mutagenesis and briefly discuss the history of barcoding, experimental problems, novel detection methods, and future directions.

摘要

DNA 条形码是一种通过独特的 DNA 序列来识别生物实体的方法,包括单个细胞、组织、器官或物种。随着下一代测序(NGS)的出现,与医学诊断、遗传学、毒理学、生态学、癌症和发育生物学相关的数据获取呈指数级增长。虽然条形码最初广泛用于识别物种,但标记突变体技术在阐明基因功能方面非常有用,特别是在微生物中。随着 CRISPR/CAS9 的出现,用于描绘真核基因的方法在毒理学和癌症生物学中产生了广泛的影响。设计的同源定向 guide RNA(hgRNA)通过在细胞标识符内引入随机突变,促进真核细胞的谱系条形码。虽然这些应用都有其局限性,但序列条形码的潜力尚未实现。这篇综述将重点介绍标记突变体技术,并简要讨论条形码的历史、实验问题、新的检测方法和未来方向。

相似文献

1
The continuing evolution of barcode applications: Functional toxicology to cell lineage.
Exp Biol Med (Maywood). 2022 Dec;247(23):2119-2127. doi: 10.1177/15353702221121600. Epub 2022 Sep 16.
2
Lineage barcoding in mice with homing CRISPR.
Nat Protoc. 2021 Apr;16(4):2088-2108. doi: 10.1038/s41596-020-00485-y. Epub 2021 Mar 10.
3
Quantitative Analysis of Synthetic Cell Lineage Tracing Using Nuclease Barcoding.
ACS Synth Biol. 2017 Jun 16;6(6):936-942. doi: 10.1021/acssynbio.6b00309. Epub 2017 Mar 10.
4
Simulation of CRISPR-Cas9 editing on evolving barcode and accuracy of lineage tracing.
Sci Rep. 2024 Aug 19;14(1):19213. doi: 10.1038/s41598-024-70154-7.
5
Defining endogenous barcoding sites for CRISPR/Cas9-based cell lineage tracing in zebrafish.
J Genet Genomics. 2020 Feb 20;47(2):85-91. doi: 10.1016/j.jgg.2019.11.012. Epub 2020 Feb 7.
6
Lineage tracing using a Cas9-deaminase barcoding system targeting endogenous L1 elements.
Nat Commun. 2019 Mar 15;10(1):1234. doi: 10.1038/s41467-019-09203-z.
7
Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens.
Mol Ecol Resour. 2014 Sep;14(5):892-901. doi: 10.1111/1755-0998.12236. Epub 2014 Feb 19.
8
Reconstructing cell lineage trees with genomic barcoding: approaches and applications.
J Genet Genomics. 2024 Jan;51(1):35-47. doi: 10.1016/j.jgg.2023.05.011. Epub 2023 Jun 1.
9
Cellular barcoding: lineage tracing, screening and beyond.
Nat Methods. 2018 Nov;15(11):871-879. doi: 10.1038/s41592-018-0185-x. Epub 2018 Oct 30.
10
DNA barcoding, an effective tool for species identification: a review.
Mol Biol Rep. 2023 Jan;50(1):761-775. doi: 10.1007/s11033-022-08015-7. Epub 2022 Oct 29.

引用本文的文献

1
PcdA promotes orthogonal division plane selection in Staphylococcus aureus.
Nat Microbiol. 2024 Nov;9(11):2997-3012. doi: 10.1038/s41564-024-01821-8. Epub 2024 Oct 28.
2
The therapeutic bionanoscience interface.
Exp Biol Med (Maywood). 2022 Dec;247(23):2065-2066. doi: 10.1177/15353702221144090. Epub 2022 Dec 19.

本文引用的文献

1
Estimating excess mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality, 2020-21.
Lancet. 2022 Apr 16;399(10334):1513-1536. doi: 10.1016/S0140-6736(21)02796-3. Epub 2022 Mar 10.
2
CYP1B1 converts procarcinogens into genotoxins in Saccharomyces cerevisiae.
Mutat Res Genet Toxicol Environ Mutagen. 2022 Feb-Mar;874-875:503440. doi: 10.1016/j.mrgentox.2022.503440. Epub 2022 Jan 7.
3
Genome-scale CRISPR screens identify host factors that promote human coronavirus infection.
Genome Med. 2022 Jan 27;14(1):10. doi: 10.1186/s13073-022-01013-1.
5
Toward a genome sequence for every animal: Where are we now?
Proc Natl Acad Sci U S A. 2021 Dec 28;118(52). doi: 10.1073/pnas.2109019118.
6
Representation and participation across 20 years of plant genome sequencing.
Nat Plants. 2021 Dec;7(12):1571-1578. doi: 10.1038/s41477-021-01031-8. Epub 2021 Nov 29.
7
Assessment of two-pool multiplex long-amplicon nanopore sequencing of SARS-CoV-2.
J Med Virol. 2022 Jan;94(1):327-334. doi: 10.1002/jmv.27336. Epub 2021 Sep 23.
9
Early developmental asymmetries in cell lineage trees in living individuals.
Science. 2021 Mar 19;371(6535):1245-1248. doi: 10.1126/science.abe0981.
10
Genome-wide screens in yeast models towards understanding chronological lifespan regulation.
Brief Funct Genomics. 2022 Jan 25;21(1):4-12. doi: 10.1093/bfgp/elab011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验