预测老年住院患者的药物不良事件:一项机器学习研究。

Predicting adverse drug events in older inpatients: a machine learning study.

机构信息

Department of Pharmacy, West China Hospital, Chengdu, 610041, China.

The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Int J Clin Pharm. 2022 Dec;44(6):1304-1311. doi: 10.1007/s11096-022-01468-7. Epub 2022 Sep 17.

Abstract

BACKGROUND

Building an effective prediction model of adverse drug events (ADE) is necessary to prevent harm caused by medication in older inpatients.

AIM

This study aimed to develop a machine learning-based prediction model for the prediction of ADE and explore the risk factors associated with ADEs in older inpatients.

METHOD

Data were from an observational, retrospective study that included 1800 older Chinese inpatients. After dividing the patients into training and test sets (8:2), seven machine learning models were used. Demographic, admission, and treatment clinical variables were considered for model development. The discriminative performance of the model by the area under the receiver operating characteristic curve (ROC) was evaluated. We also calculated the model's accuracy, precision, recall, and F1 scores.

RESULTS

Among 1800 patients, 296 ADEs were detected in 234 (13.00%) patients. The main cause of ADEs was antineoplastic agents (55.74%). Seven algorithms, including eXtreme Gradient Boosting (XGBoost), AdaBoost, CatBoost, Gradient Boosting Decision Tree (GBDT), Light Gradient Boosting Machine (LightGBM), Tree-based Pipeline Optimization Tool (TPOT) and Random Forest (RF), were used to establish the prediction model. The Adaboost model was chosen with the best predictive ability (accuracy 88.06%, precision 68.57%, recall 48.21%, F1 52.75%, and AUC 0.91). Ten significant factors associated with ADEs were identified, including the number of true triggers (+), length of stay, doses per patient, age, number of admissions in the previous year, surgery, drugs per patient, number of medical diagnoses, antibacterial use, and gender.

CONCLUSION

Using machine learning, this novel study establishes an ADE prediction model in older patients. The sophisticated computer algorithm can be implemented at the bedside to improve patient safety in clinical practice.

摘要

背景

构建有效的药物不良事件(ADE)预测模型对于预防老年住院患者因用药而造成的伤害至关重要。

目的

本研究旨在建立基于机器学习的预测模型,以预测老年住院患者的 ADE,并探讨与 ADE 相关的风险因素。

方法

数据来自一项观察性、回顾性研究,共纳入 1800 名中国老年住院患者。将患者分为训练集和测试集(8:2)后,使用了七种机器学习模型。考虑了人口统计学、入院和治疗临床变量以开发模型。通过受试者工作特征曲线(ROC)下的面积(AUC)评估模型的区分性能。我们还计算了模型的准确性、精确性、召回率和 F1 评分。

结果

在 1800 名患者中,234 名(13.00%)患者中检测到 296 例 ADE。ADE 的主要原因是抗肿瘤药物(55.74%)。使用了七种算法,包括极端梯度提升(XGBoost)、自适应增强(AdaBoost)、CatBoost、梯度提升决策树(GBDT)、轻梯度提升机(LightGBM)、基于树的管道优化工具(TPOT)和随机森林(RF)来建立预测模型。选择了具有最佳预测能力的自适应增强模型(准确性 88.06%、精确性 68.57%、召回率 48.21%、F1 为 52.75%、AUC 为 0.91)。确定了与 ADE 相关的十个重要因素,包括真实触发器的数量(+)、住院时间、每位患者的剂量、年龄、前一年的入院次数、手术、每位患者的药物、医疗诊断数量、抗菌药物使用和性别。

结论

本研究使用机器学习方法建立了老年患者的 ADE 预测模型。复杂的计算机算法可以在床边实施,以提高临床实践中的患者安全性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索