Suppr超能文献

药物警戒中的人工智能:一项叙述性综述及使用专家定义的贝叶斯网络工具的实践经验

Artificial intelligence in pharmacovigilance: a narrative review and practical experience with an expert-defined Bayesian network tool.

作者信息

Algarvio Rogério Caixinha, Conceição Jaime, Rodrigues Pedro Pereira, Ribeiro Inês, Ferreira-da-Silva Renato

机构信息

Faculty of Sciences and Technology, University of Algarve, Faro, Portugal.

Algarve Biomedical Centre Research Institute (ABC-Ri), University of Algarve, Faro, Portugal.

出版信息

Int J Clin Pharm. 2025 Aug;47(4):932-944. doi: 10.1007/s11096-025-01975-3. Epub 2025 Jul 30.

Abstract

BACKGROUND

Pharmacovigilance is vital for monitoring adverse drug reactions (ADRs) and ensuring drug safety. Traditional methods are slow and inconsistent, but artificial intelligence (AI), through automation and advanced analytics, improves efficiency and accuracy in managing increasing data complexity.

AIM

To explore AI's practical applications in pharmacovigilance, focusing on efficiency, process acceleration, and task automation. It also examines the use of an expert-defined Bayesian network for causality assessment in a Pharmacovigilance Centre, demonstrating its impact on decision-making.

METHOD

A comprehensive literature narrative review was conducted in MEDLINE (via PubMed), Scopus, and Web of Science using a set of targeted keywords, including but not limited to "pharmacovigilance", "artificial intelligence", "adverse drug reactions" and "drug safety". Relevant studies were analysed without restrictions on publication year or language. The search was carried out in January 2025.

RESULTS

AI has greatly improved pharmacovigilance by streamlining signal detection, surveillance, and ADR reporting automation. Techniques like data mining and automated signal detection have expedited safety signal identification, while duplicate detection has enhanced data precision in safety evaluations. AI has also refined real-world evidence analysis, deepening drug safety and efficacy insights. Predictive models now anticipate ADRs and drug-drug interactions, enabling proactive patient care. At a regional pharmacovigilance center, the implementation of an expert-defined Bayesian network has optimized causality assessment, reducing processing times from days to hours, minimizing subjectivity, and improving the reliability of drug safety evaluations.

CONCLUSION

AI holds significant promise for enhancing pharmacovigilance practices, yet its practical application remains primarily confined to academic research, with integration hindered by data quality issues, regulatory barriers, and the need for more transparent algorithms.

摘要

背景

药物警戒对于监测药物不良反应(ADR)和确保药物安全至关重要。传统方法缓慢且不一致,但人工智能(AI)通过自动化和高级分析,提高了管理日益复杂的数据的效率和准确性。

目的

探索AI在药物警戒中的实际应用,重点关注效率、流程加速和任务自动化。它还研究了在药物警戒中心使用专家定义的贝叶斯网络进行因果关系评估,展示其对决策的影响。

方法

在MEDLINE(通过PubMed)、Scopus和Web of Science中使用一组目标关键词进行了全面的文献叙述性综述,包括但不限于“药物警戒”、“人工智能”、“药物不良反应”和“药物安全”。对相关研究进行分析,不受出版年份或语言限制。检索于2025年1月进行。

结果

AI通过简化信号检测、监测和ADR报告自动化,极大地改善了药物警戒。数据挖掘和自动信号检测等技术加快了安全信号识别,而重复检测提高了安全评估中的数据精度。AI还改进了真实世界证据分析,加深了对药物安全性和有效性的理解。预测模型现在可以预测ADR和药物相互作用,实现主动的患者护理。在一个地区药物警戒中心,实施专家定义的贝叶斯网络优化了因果关系评估,将处理时间从数天缩短至数小时,减少了主观性,提高了药物安全评估的可靠性。

结论

AI在增强药物警戒实践方面具有巨大潜力,但其实际应用主要仍局限于学术研究,数据质量问题、监管障碍以及对更透明算法的需求阻碍了其整合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验