Suppr超能文献

基于动态环境中目标检测的视觉同步定位与地图构建方法。

VSLAM method based on object detection in dynamic environments.

作者信息

Liu Jia, Gu Qiyao, Chen Dapeng, Yan Dong

机构信息

School of Automation, C-IMER, B-DAT, CICAEET, Nanjing University of Information Science & Technology, Nanjing, China.

出版信息

Front Neurorobot. 2022 Sep 2;16:990453. doi: 10.3389/fnbot.2022.990453. eCollection 2022.

Abstract

Augmented Reality Registration field now requires improved SLAM systems to adapt to more complex and highly dynamic environments. The commonly used VSLAM algorithm has problems such as excessive pose estimation errors and easy loss of camera tracking in dynamic scenes. To solve these problems, we propose a real-time tracking and mapping method based on GMM combined with YOLOv3. The method utilizes the ORB-SLAM2 system framework and improves its tracking thread. It combines the affine transformation matrix to correct the front and back frames, and employs GMM to model the background image and segment the foreground dynamic region. Then, the obtained dynamic region is sent to the YOLO detector to find the possible dynamic target. It uses the improved Kalman filter algorithm to predict and track the detected dynamic objects in the tracking stage. Before building a map, the method filters the feature points detected in the current frame and eliminates dynamic feature points. Finally, we validate the proposed method using the TUM dataset and conduct real-time Augmented Reality Registration experiments in a dynamic environment. The results show that the method proposed in this paper is more robust under dynamic datasets and can register virtual objects stably and in real time.

摘要

增强现实注册领域现在需要改进的同步定位与地图构建(SLAM)系统,以适应更复杂和高度动态的环境。常用的视觉同步定位与地图构建(VSLAM)算法存在诸如位姿估计误差过大以及在动态场景中容易丢失相机跟踪等问题。为了解决这些问题,我们提出了一种基于高斯混合模型(GMM)并结合YOLOv3的实时跟踪与地图构建方法。该方法利用ORB-SLAM2系统框架并改进其跟踪线程。它结合仿射变换矩阵来校正前后帧,并采用高斯混合模型对背景图像进行建模并分割前景动态区域。然后,将获得的动态区域发送到YOLO检测器以找到可能的动态目标。在跟踪阶段,它使用改进的卡尔曼滤波算法来预测和跟踪检测到的动态物体。在构建地图之前,该方法对当前帧中检测到的特征点进行滤波并消除动态特征点。最后,我们使用TUM数据集验证了所提出的方法,并在动态环境中进行了实时增强现实注册实验。结果表明,本文提出的方法在动态数据集下更稳健,能够稳定、实时地注册虚拟物体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf2b/9478733/066adbb20336/fnbot-16-990453-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验