Suppr超能文献

DIO-SLAM:一种结合实例分割与光流的动态RGB-D同步定位与地图构建方法

DIO-SLAM: A Dynamic RGB-D SLAM Method Combining Instance Segmentation and Optical Flow.

作者信息

He Lang, Li Shiyun, Qiu Junting, Zhang Chenhaomin

机构信息

Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China.

College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.

出版信息

Sensors (Basel). 2024 Sep 12;24(18):5929. doi: 10.3390/s24185929.

Abstract

Feature points from moving objects can negatively impact the accuracy of Visual Simultaneous Localization and Mapping (VSLAM) algorithms, while detection or semantic segmentation-based VSLAM approaches often fail to accurately determine the true motion state of objects. To address this challenge, this paper introduces DIO-SLAM: Dynamic Instance Optical Flow SLAM, a VSLAM system specifically designed for dynamic environments. Initially, the detection thread employs YOLACT (You Only Look At CoefficienTs) to distinguish between rigid and non-rigid objects within the scene. Subsequently, the optical flow thread estimates optical flow and introduces a novel approach to capture the optical flow of moving objects by leveraging optical flow residuals. Following this, an optical flow consistency method is implemented to assess the dynamic nature of rigid object mask regions, classifying them as either moving or stationary rigid objects. To mitigate errors caused by missed detections or motion blur, a motion frame propagation method is employed. Lastly, a dense mapping thread is incorporated to filter out non-rigid objects using semantic information, track the point clouds of rigid objects, reconstruct the static background, and store the resulting map in an octree format. Experimental results demonstrate that the proposed method surpasses current mainstream dynamic VSLAM techniques in both localization accuracy and real-time performance.

摘要

来自移动物体的特征点会对视觉同步定位与建图(VSLAM)算法的准确性产生负面影响,而基于检测或语义分割的VSLAM方法往往无法准确确定物体的真实运动状态。为应对这一挑战,本文介绍了DIO-SLAM:动态实例光流SLAM,这是一种专门为动态环境设计的VSLAM系统。首先,检测线程采用YOLACT(You Only Look At CoefficienTs)来区分场景中的刚性和非刚性物体。随后,光流线程估计光流,并引入一种新颖的方法,通过利用光流残差来捕捉移动物体的光流。在此之后,实施一种光流一致性方法来评估刚性物体掩码区域的动态特性,将它们分类为移动或静止的刚性物体。为减轻漏检或运动模糊导致的误差,采用了一种运动帧传播方法。最后,纳入一个密集建图线程,利用语义信息滤除非刚性物体,跟踪刚性物体的点云,重建静态背景,并将生成的地图存储为八叉树格式。实验结果表明,该方法在定位精度和实时性能方面均超越了当前主流的动态VSLAM技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd83/11435655/00d974171aa0/sensors-24-05929-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验