Riznichenko Galina Yu, Antal Taras K, Belyaeva Natalia E, Khruschev Sergey S, Kovalenko Ilya B, Maslakov Alexey S, Plyusnina Tatyana Yu, Fedorov Vladimir A, Rubin Andrey B
Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia.
Laboratory of Integrated Environmental Research, Pskov State University, Lenin Sq. 2, 180000 Pskov, Russia.
Biophys Rev. 2022 Aug 19;14(4):985-1004. doi: 10.1007/s12551-022-00988-w. eCollection 2022 Aug.
The paper presents the results of recent work at the Department of Biophysics of the Biological Faculty, Lomonosov Moscow State University on the kinetic and multiparticle modeling of processes in the photosynthetic membrane. The detailed kinetic models and the rule-based kinetic Monte Carlo models allow to reproduce the fluorescence induction curves and redox transformations of the photoactive pigment P700 in the time range from 100 ns to dozens of seconds and make it possible to reveal the role of individual carriers in their formation for different types of photosynthetic organisms under different illumination regimes, in the presence of inhibitors, under stress conditions. The fitting of the model curves to the experimental data quantifies the reaction rate constants that cannot be directly measured experimentally, including the non-radiative thermal relaxation reactions. We use the direct multiparticle models to explicitly describe the interactions of mobile photosynthetic carrier proteins with multienzyme complexes both in solution and in the biomembrane interior. An analysis of these models reveals the role of diffusion and electrostatic factors in the regulation of electron transport, the influence of ionic strength and pH of the cellular environment on the rate of electron transport reactions between carrier proteins. To describe the conformational intramolecular processes of formation of the final complex, in which the actual electron transfer occurs, we use the methods of molecular dynamics. The results obtained using kinetic and molecular models supplement our knowledge of the mechanisms of organization of the photosynthetic electron transport processes at the cellular and molecular levels.
本文介绍了莫斯科国立罗蒙诺索夫大学生物系生物物理教研室近期在光合膜过程动力学和多粒子建模方面的研究成果。详细的动力学模型和基于规则的动力学蒙特卡罗模型能够在100纳秒至几十秒的时间范围内重现光活性色素P700的荧光诱导曲线和氧化还原转变,并揭示不同光照条件下、存在抑制剂时以及应激条件下,不同类型光合生物中各个载体在其形成过程中的作用。将模型曲线与实验数据进行拟合,可以量化那些无法通过实验直接测量的反应速率常数,包括非辐射热弛豫反应。我们使用直接多粒子模型来明确描述溶液中和生物膜内部移动的光合载体蛋白与多酶复合物之间的相互作用。对这些模型的分析揭示了扩散和静电因素在电子传递调节中的作用,以及细胞环境的离子强度和pH值对载体蛋白之间电子传递反应速率的影响。为了描述发生实际电子转移的最终复合物形成过程中的构象分子内过程,我们使用了分子动力学方法。利用动力学和分子模型获得的结果补充了我们在细胞和分子水平上对光合电子传递过程组织机制的认识。