Suppr超能文献

光合色素 - 蛋白质复合体光诱导稳态电势产生的测量。

Measurements of the light-induced steady state electric potential generation by photosynthetic pigment-protein complexes.

作者信息

Mamedov Mahir D, Milanovsky Georgy E, Vitukhnovskaya Liya, Semenov Alexey Yu

机构信息

A. N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow, Russia.

N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.

出版信息

Biophys Rev. 2022 Jul 6;14(4):933-939. doi: 10.1007/s12551-022-00966-2. eCollection 2022 Aug.

Abstract

In this minireview, we consider the methods of measurements of the light-induced steady state transmembrane electric potential (Δψ) generation by photosynthetic systems, e.g. photosystem I (PS I). The microelectrode technique and the detection of electrochromic bandshifts of carotenoid pigments are most appropriate for Δψ measurements in situ and in vivo. Direct electrometrical method and Δψ measurements in the photovoltaic system based on membrane filter (MF) sandwiched between semiconductor indium tin oxide electrodes (ITO) are suitable for studies of isolated pigment-protein complexes and small natural vesicles-chromatophores. In the presence of trehalose, ITO|PS I-MF|ITO system allows to keep a steady state level of ∆ψ after 1 h of illumination. According to preliminary experiments, this system is capable of providing steady state light-induced ∆ψ after several months of storage in the dark at room temperature under controlled humidity in the presence of trehalose. The long-term generation of light-induced ∆ψ in relatively simple system may serve as a source of the solar-to-electric energy conversion.

摘要

在本综述中,我们探讨了光合系统(如光系统I,即PS I)光诱导产生稳态跨膜电势(Δψ)的测量方法。微电极技术和类胡萝卜素色素的电致变色带移检测最适合于原位和体内的Δψ测量。基于夹在半导体铟锡氧化物电极(ITO)之间的膜滤器(MF)的光伏系统中的直接电测法和Δψ测量,适用于研究分离的色素 - 蛋白质复合物和小型天然囊泡 - 载色体。在海藻糖存在的情况下,ITO|PS I - MF|ITO系统在光照1小时后能够保持Δψ的稳态水平。根据初步实验,该系统在室温下黑暗中、在可控湿度和海藻糖存在的条件下储存数月后,仍能够提供稳态的光诱导Δψ。在相对简单的系统中长时间产生光诱导Δψ可作为太阳能到电能转换的一个来源。

相似文献

本文引用的文献

4
Putting Photosystem I to Work: Truly Green Energy.将光系统 I 投入工作:真正的绿色能源。
Trends Biotechnol. 2020 Dec;38(12):1329-1342. doi: 10.1016/j.tibtech.2020.04.004. Epub 2020 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验