Graduate School of Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
Graduate School of Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996, USA.
Trends Biotechnol. 2020 Dec;38(12):1329-1342. doi: 10.1016/j.tibtech.2020.04.004. Epub 2020 May 21.
Meeting growing energy demands sustainably is one of the greatest challenges facing the world. The sun strikes the Earth with sufficient energy in 1.5 h to meet annual world energy demands, likely making solar energy conversion part of future sustainable energy production plans. Photosynthetic organisms have been evolving solar energy utilization strategies for nearly 3.5 billion years, making reaction centers including the remarkably stable Photosystem I (PSI) especially interesting for biophotovoltaic device integration. Although these biohybrid devices have steadily improved, their output remains low compared with traditional photovoltaics. We discuss strategies and methods to improve PSI-based biophotovoltaics, focusing on PSI-surface interaction enhancement, electrolytes, and light-harvesting enhancement capabilities. Desirable features and current drawbacks to PSI-based devices are also discussed.
满足不断增长的能源需求是世界面临的最大挑战之一。太阳在 1.5 小时内照射地球的能量足以满足全球年度能源需求,这使得太阳能转化可能成为未来可持续能源生产计划的一部分。光合生物已经进化出了近 35 亿年的太阳能利用策略,这使得包括非常稳定的 PSI(Photosystem I)在内的反应中心特别有趣,适合用于生物光伏器件的集成。尽管这些生物混合器件的性能一直在稳步提高,但与传统的光伏相比,它们的输出仍然较低。我们讨论了提高基于 PSI 的生物光伏的策略和方法,重点是 PSI 表面相互作用的增强、电解质和光捕获能力的增强。还讨论了基于 PSI 的器件的理想特性和当前的缺点。