Suppr超能文献

关于具有共形导数的分数阶伪抛物型方程的一个初边值问题。

On an initial boundary value problem for fractional pseudo-parabolic equation with conformable derivative.

作者信息

Nguyen Huy Tuan, Tien Nguyen Van, Yang Chao

机构信息

Division of Applied Mathematics, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam.

Faculty of Applied Technology, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.

出版信息

Math Biosci Eng. 2022 Aug 5;19(11):11232-11259. doi: 10.3934/mbe.2022524.

Abstract

In this paper, we study the initial boundary value problem of the pseudo-parabolic equation with a conformable derivative. We focus on investigating the existence of the global solution and examining the derivative's regularity. In addition, we contributed two interesting results. Firstly, we proved the convergence of the mild solution of the pseudo-parabolic equation to the solution of the parabolic equation. Secondly, we examine the convergence of solution when the order of the derivative of the fractional operator approaches $ 1^- $. Our main techniques used in this paper are Banach fixed point theorem and Sobolev embedding. We also apply different techniques to evaluate the convergence of generalized integrals encountered.

摘要

在本文中,我们研究了具有共形导数的拟抛物方程的初边值问题。我们着重研究全局解的存在性并考察导数的正则性。此外,我们得到了两个有趣的结果。首先,我们证明了拟抛物方程的温和解向抛物方程解的收敛性。其次,我们考察了分数阶算子导数的阶数趋于$1^-$时解的收敛性。本文使用的主要技术是巴拿赫不动点定理和索伯列夫嵌入。我们还应用了不同的技术来评估所遇到的广义积分的收敛性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验