Department of Mathematics, University of the Punjab, New Campus, Lahore, Pakistan.
BORDA Research Unit and Multidisciplinary Institute of Enterprise (IME), Universidad de Salamanca, 37007 Salamanca, Spain.
Math Biosci Eng. 2022 Aug 8;19(11):11281-11323. doi: 10.3934/mbe.2022526.
The need for multi-attribute decision-making brings more and more complexity, and this type of decision-making extends to an ever wider range of areas of life. A recent model that captures many components of decision-making frameworks is the complex $ q $-rung picture fuzzy set (C$ q $-RPFS), a generalization of complex fuzzy sets and $ q $-rung picture fuzzy sets. From a different standpoint, linguistic terms are very useful to evaluate qualitative information without specialized knowledge. Inspired by the ease of use of the linguistic evaluations by means of 2-tuple linguistic term sets, and the broad scope of applications of C$ q $-RPFSs, in this paper we introduce the novel structure called 2-tuple linguistic complex $ q $-rung picture fuzzy sets (2TLC$ q $-RPFSs). We argue that this model prevails to represent the two-dimensional information over the boundary of C$ q $-RPFSs, thanks to the additional features of 2-tuple linguistic terms. Subsequently, some 2TLC$ q $-RPF aggregation operators are proposed. Fundamental cases include the 2TLC$ q $-RPF weighted averaging/geometric operators. Other sophisticated aggregation operators that we propose are based on the Hamacher operator. In addition, we investigate some essential properties of the new operators. These tools are the building blocks of a multi-attribute decision making strategy for problems posed in the 2TLC$ q $-RPFS setting. Furthermore, a numerical instance that selects an optimal machine is given to guarantee the applicability and effectiveness of the proposed approach. Finally, we conduct a comparison with other existing approaches.
多属性决策带来了越来越多的复杂性,这种决策扩展到了生活的各个领域。最近的一个模型捕捉到了决策框架的许多组成部分,即复杂的$q$级阶梯模糊集(C$q$ - RPFS),它是复杂模糊集和$q$级阶梯模糊集的推广。从不同的角度来看,语言术语对于评估没有专业知识的定性信息非常有用。受语言评估的易用性的启发,以及 C$q$ - RPFS 的广泛应用,在本文中,我们引入了一种称为 2 元语言的复杂$q$级阶梯模糊集(2TLC$q$ - RPFS)的新结构。我们认为,由于 2 元语言术语的附加特性,该模型在 C$q$ - RPFS 边界上表示二维信息更有优势。随后,提出了一些 2TLC$q$ - RPFS 聚合算子。基本情况包括 2TLC$q$ - RPFS 加权平均/几何算子。我们提出的其他复杂聚合算子是基于 Hamacher 算子的。此外,我们还研究了新算子的一些基本性质。这些工具是在 2TLC$q$ - RPFS 环境中提出的多属性决策问题的决策策略的基础。此外,还给出了一个选择最优机器的数值实例,以保证所提出方法的适用性和有效性。最后,我们与其他现有方法进行了比较。